با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسندگان

1 کارشناس ارشد بیوتکنولوژی کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران

2 استادیار گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران

چکیده

کنجد (L. Sesamum indicum) با داشتن مقادیر زیاد آنتی‌اکسیدان و متابولیت ثانویه منبع تغذیه‌ای مهمی در تامین و حفظ سلامت انسان است. اهمیت ویژه دانه کنجد به‎دلیل وجود آنتی‌اکسیدان طبیعی مهمی به نام سزامین است. به‎دلیل کاربرد این آنتی‌اکسیدانت در پیشگیری از بروز بیماری‌ها به‎خصوص سرطان‌ها تلاش‌های زیادی در راستای شناخت ییشتر ژن‌های دخیل در مسیر بیوسنتز این ماده و افزایش سطح بیان ژن‌های رمز کننده آنزیم‌های مربوطه انجام شده است. در این مطالعه سطح بیان ژن‌های کلیدیCYP81Q1 ،CYP81Q2 ،CYP81Q3 و C3H دخیل در بیوسنتز سزامین در دانه 10 رقم کنجد شامل رقم یکتا، زودرس فلسطینی، ناز تک شاخه، ناز چند شاخه، اولتان، جیرفت، دشتستان 5، دشتستان 2، ورامین و کرج 1 با روش QRT-PCR و ژن خانه‌دار 18S rRNA بررسی شد. براساس نتایج حاصله سطح بیان ژن CYP81Q1 در رقم زودرس فلسطینی پایین بوده و بعلت پایین بودن مقدار سزامین آن، این رقم را نمی‌توان در مقایسه با سایر ارقام به‎عنوان یک رقم روغنی مطلوب از نظر کیفییت معرفی کرد. رقم یکتا در بین ارقام بیشترین سطح بیان ژن CYP81Q1 را داشت و یکی از بهترین ارقام در تولید روغن از نظر کیفی و کمی است. ژن CYP81Q2 در رقم ناز چند شاخه بیشترین و ژن CYP81Q3 در رقم زودرس فلسطینی کمترین سطح بیان را داشتند. همچنین ارقام کرج 1، یکتا و دشتستان 5 بیشترین سطح بیان ژن C3H و اولتان کمترین سطح بیان را داشتند. ارقام کرج 1، یکتا و دشتستان 5 جزء ارقام تقریباً دیررس هستند. ارقام دیررس دارای روغن بیشتر و محتوای سزامین بالاتری در مقایسه با ارقام زودرس هستند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Expression of CYP genes involved in sesamin biosynthesis pathway in different varieties of sesame seeds (Sesamum indicum L.)

نویسندگان [English]

  • Azedeh Rayani 1
  • Fatemeh Dehghan Nayeri 2

1 M.Sc. in Agricultural Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.

2 Assistance Professor of Agricultural Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.

چکیده [English]

Sesame (Sesamum indicum L.) is one of the oldest oilseed crops that has been a main food source providing beneficial nutritional outcomes to human health due to its high contents of antioxidants and secondary metabolites. The importance of sesame arises from presence of antioxidant sesamin. Over recent decades, due to being used in cancer cases, there have been numerous efforts aimed at better understanding of the genes underlying sesamin biosynthesis and increasing their expression. In this research, expression levels of the key genes in sesamin biosynthesis pathway including CYP81Q1, CYP81Q2, CYP81Q3 and C3H genes were measured in 10 sesame cultivars seeds (Yekta, early Palestinian, Naz tak shakheh, Naz chand shakheh, Oltan, Jiroft, Dashtestan 5, Dashtestan 2, Varamin and Karaj 1) by QRT-PCR technique and 18S rRNA gene as reference gene. Our findings showed that the level of CYP81Q1 gene expression was low in Early Palestinian that has low sesamin content. Therefore, this might not be considered as a qualitatively desired oil cultivar compared to others, whereas Yekta had the highest level of CYP81Q1 expression the best varieties for oil production both qualitatively and quantitatively. The highest expression level of CYP81Q2 was observed in Naz chand shakheh, while the lowest CYP81Q2 expression was found in Early Palestinian. Karaj1, Yekta and Dashtestan 5 showed the highest whereas Oltan had the lowest expression level of C3H. Karaj 1, Yekta and Dashtestan 5 were relatively from the late mature group that was reported to have higher contents of oil and sesamin than early ones.

کلیدواژه‌ها [English]

  • "Sesame"
  • "Sesamin"
  • "QRT-PCR"
  • "Gene expression"
Anterola AM, Jeon JH, Davin LB, Lewis NG (2002) Transcriptional control of monolignol biosynthesis in Pinus taeda factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism. J. Biol. Chem. 277: 18272-18280.
Dini Torkamani M, Karaptyan Z (2007) The amount and variety of proteins in seeds of ten cultivars of sesame (Sesamum indicum L.). J. Sci. Technol. Agr. Nat. Res. Soil Wat. Sci. 2(40): 225-231.
 
[1]. P-coumarate 3 hydroxylase
Fischer M, Knoll M, Sirim D, Wagner F, Funke S, Pleiss J (2007) The cytochrome P450 engineering database: a navigation and prediction tool for the cytochrome P450 protein family. Bioinformatics 23: 2015-2017.
Fuss E (2003) Lignans in plant cell and organ cultures: an overview. Phytochem. Rev. 2: 307-320.
Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2010) Comparison of sesamin contents and CYP81Q1 gene expressions in
 
     aboveground vegetative organs between two Japanese sesame (Sesamum indicum L.) varieties differing in seed sesamin contents. Plant Sci. 178: 510-516.
Hwan Lee J, Baek IY, Ko JM, Shim KB, Kang NS, Kim HT (2008) Correlation of lignan contents with protein and oil contents in the seeds of Sesamum indicum L. J. Appl. Biol. Chem. 51(1): 20-27.
Hemalatha S (2004) Lignans and tocopherols in Indian sesame cultivars. J. Am. Oil. Chem. Soc. 81: 467-470.
Hirose N, Nishihara K, Sugano M, Akimoto K, Shimizu S,Yamada H (1991) Inhibition of cholesterol absorption and synthesis in rats by sesamin. J. Lipid Res. 32: 629-638.
Jeng KC (2005) Sesamin and sesamolin: Nature’s therapeutic lignans. Curr. Enz. Inhib. 1: 11-20.
Kamal-Eldin A, Frank J, Razdan A, Tengblad S, Basu S, Vessby B (2000) Effects of dietary phenolic compounds on tocopherol, cholesterol, and fatty acids in rats. Lipids 35: 427-435.
Katsuzaki H, Kawasumi M, Kawakishi S, Osawa T (1992) Structure of novel antioxidative lignan glucosides isolated from sesame seed. Biosci. Biotech. Bioch. 56: 2087-2088.
Khodadadi A, Hamidinia M, Boroujerdnia M, Mohammadi J (2011) The impact of real-time PCR method using a standard curve and linear regression approach. J. Jondi Shapour. 11(76): 85-95.
Kilkkinen A, Erlund I, Virtanen MJ, Alfthan G, Ariniemi K, Virtamo J (2006) Serum enterolactone concentration and the risk of coronary heart disease in a case-cohort study of Finnish male smokers. Am. J. Epidemiol. 163: 687-693.
Kuzhuvelil B. Harikumar, Sung B, Tharakan ST, Pandey MK,Joy B,Guha S,Krishnan S,AggarwalBB (2010) Sesamin manifests chemopreventive effects through suppression of NF-κB-regulated cell survival, proliferation, invasion and angiogenic gene products. Mol. Cancer Res. 8: 751-761.
Lim JS, Adachi Y, Takahashi Y, Ide T (2007) Comparative analysis of sesame lignans (sesamin and sesamolin) in affecting hepatic fatty acid metabolism in rats. Brit. J. Nutr. 97: 85-95.
Mansuy D (1998) The great diversity of reactions catalyzed by cytochromes P450. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 121: 5-14.
Miyawaki T, Aono H, Toyoda-Ono Y, Maeda H, Kiso Y, Moriyama K (2009) Antihypertensive effects of sesamin in humans. J. Nutr. Sci. Vitaminol. 55: 87-91.
Moazzami AA, Andersson RE, Kamal-Eldin A (2006) HPLC analysis of sesaminol glucosides in sesame seeds. J. Agr. Food Chem. 54: 633-638.
Mukhopadhyay N, Ray AK (1999) Effect of fermentation on the nutritive value of sesame seed meal in the diets for rohu, Labeo rohita (Hamilton), fingerlings. Aquacult. Nutr. 5 (4): 229-236.
Nakai M, Harada M, Nakahara K, Akimoto K, Shibata H, Miki W, Kiso Y (2003) Novel antioxidative metabolites in rat liver with ingested sesamin. J. Agr. Food Chem. 51: 1666-70.
Nakano D, Itoh C, Ishii F, Kawanishi H, Takaoka M, Kiso Y, Tsuruoka N, Tanaka T, Matsumura Y (2003) Effects of sesamin on aortic oxidative stress and endothelial dysfunction in deoxycorticosterone acetate-salt hypertensive rats. Biol. Pharm. Bull. 26: 1701-1705.
Namiki M (1995) The chemistry and physiological functions of sesame. Food Rev. Int. 11: 281-329.
Ono E, Nakai M, Fukui Y, Tomimori N, Fukuchi-Mizutani M, Saito M, Satake H, Tanaka T, Katsuta M, Umezawa T (2006) Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan,(+)-sesamin. Proc. Natl. Acad. Sci. 103: 10116-10121.
Osawa T, Nagata M, Namiki M, Fukuda Y (1985) Sesamolinol, a novel antioxidant isolated from sesame seeds. Agric. Biol. Chem. 49: 3351-3352.
Qusti S, Abo-Khatwa A, Lahwa M (2010) Screening of antioxidant activity and phenolic content of selected food items cited in the Holly Quran. J. Biol. Sci. 2: 40-51.
Rayani A, Dehghan Nayeri F (2015) An improved method for extraction of high-quality total RNA from oil seeds. Biotechnol. Lett. 37: 927-933.
Sansen S, Yano JK, Reynald RL, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2007) Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J. Biol. Chem. 282: 14348-14355.
Saxena A, Singh P, Yadav DK, Sharma P, Alam S, Khan F, Thul ST, Shukla RK, Gupta V, Sangwan NS (2013) Identification of cytochrome P450 heme motif in plants proteome. Plant Omics J. 6(1): 1-12.
Tsai SC, Liu YC, Li CP, Huang TS, Lee CC (2006) Sesamin inhibits vascular endothelial cell growth and angiogenic activity of lung adenocarcinoma cells. J. Cancer Mol. 2: 199-205.
Wahid OARA, El-Bramawy MAS (2007) Resistance of some sesame (Sesamum indicum L.) collections against root rot disease (Rhizoctonia solani Kühn) under field conditions. J. Plant Prot. Res. 47: 321-327.
Wang L, Li P, Zhang W, Wang X, Qi X, Zhang X, Zhang Y (2013) Variation of sesamin and sesamolin contents in sesame cultivars from China. Pak. J. Bot. 45(1): 177-182.
Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, Li D (2015) Genetic discovery for oil production and quality in sesame. Nat. Commun. 6: 8609-8618.
Wong, ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques. 39:1-75.