پاسخ های فیزیولوژیکی و متابولیکی گیاه برنج تحت شرایط تنش شوری

نوع مقاله: علمی پژوهشی

نویسندگان

1 دانشجوی دکتری دانشگاه علوم کشاورزی و منابع طبیعی ساری، گروه زراعت و اصلاح نباتات. مازندران، ساری، کیلومتر 9 جاده دریا، صندوق پستی 578

2 هیئت علمی دانشگاه علوم کشاورزی و منابع طبیعی ساری و رئیس پژوهشکده ژنتیک و زیست فناوری طبرستان

3 هیئت علمی موسسه تحقیقات بیوتکنولوژی کشاورزی کرج و ریاست بخش ژنومیکس

4 دانشجو

5 موسسه تحقیقات کشاورزی IPK, Gatersleben

چکیده

دو ژنوتیپ برنج IR29 و FL478با حساسیت های متفاوت به شوری تحت تنش شوری با 100 میلی مولار NaCl برای پاسخ های فیزیولوژیکی و متابولیکی مورد بررسی قرار گرفتند. به این ترتیب وزن خشک، وزن تر و طول ریشه و اندام هوایی گیاهان و همچنین میزان یون های سدیم و پتاسیم، مقدار اسید های آمینه و برخی قند ها و قند- الکل ها در ریشه و اندام هوایی گیاهان در شرایط کنترل و تنش ارزیابی شدند. بعد از 12 روز از تنش، سطح یون سدیم بخصوص در اندام هوایی IR29 افزایش معنی داری داشت در حالیکه یون پتاسیم بیشترین افزایش را در ژنوتیپ FL478 نشان داد. از طرف دیگر تغییرات متابولیکی در پاسخ به تنش های شوری در بین دو ژنوتیپ متفاوت بود، یعنی گیاهان IR29 در مقایسه با FL478 بیشترین سطح تغییرات را در اسید های آمینه بخصوص آسپارژین، گلوتامین، پرولین و GABA نشان دادند، این امر می تواند نشانگر خسارت و پیری سلول ها در گیاه حساس باشند، در حالی که قند ها و قند- الکل ها که به عنوان مواد محافظتی در سلول، تحت شرایط تنش در هر دو ژنوتیپ افزایش یافت، اما مقدار آن ها در ژنوتیپ متحمل FL478 بیشتر بود. این نتایج نشان می دهد که تفاوت های مشاهده شده در بین دو ژنوتیپ در پاسخ به تنش شوری ممکن است تا حدوی به تفاوت های مشاهده شده در سطح متابولیت ها نسبت داده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Physiological and metabolic responses in rice under salt stress

نویسندگان [English]

  • A Hashemi 1
  • GH Nematzadeh 2
  • GH Hosseini Salekde 3
  • A Hosseini 4
  • M.R Hajirezaei 5
چکیده [English]

Two rice lines, IR29 and FL478, which differed in salinity tolerance, were investigated for physiological and metabolic responses

 

REFERENCES

 

Abbasi A-R, Saur A, Hennig P, Tschiersch H, Hajirezaei M, Hofius D, Sonnewald UWE, Voll LM (2009) Tocopherol deficiency in transgenic tobacco (Nicotiana tabacum L.) plants leads to accelerated senescence. Plant Cell  Environ. 32: 144-157.

Abd El-Samad HM, Shaddad MAK, Barakat N (2011) Improvement of plants salt tolerance by exogenous application of amino acids. J. Med. Plant Res. 5: 5692-5699.

Adams E, Frank L (1980) Metabolism of Proline and the Hydroxyprolines. Annu. Rev. Biochem. 49: 1005-1061.

Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrián M, Tiburcio AF, Altabella T (2010) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants overexpressing the homologous Arginine decarboxylase 2 gene. Plant Physiol. Biochem. 48: 547-552.

Ansari MI, Chen SCG (2009) Biochemical characterization of gamma-aminobutyric acid (GABA):pyruvate transaminase during rice leaf senescence. Int. Rev. Integr. Biol. 6: 27-32.

Asch F, Dingkuhn M, Dörffling K, Miezan K (2000) Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica. 113: 109-118.

Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59: 206-216.

Boldt K, Pörs Y, Haupt B, Bitterlich M, Kühn C, Grimm B, Franken P (2011) Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato Arbuscular mycorrhiza. J. Plant Physiol. 168: 1256-1263.

Brugière N, Dubois F, Limami AM, Lelandais M, Roux Y, Sangwan RS, Hirel B (1999) Glutamine Synthetase in the Phloem Plays a Major Role in Controlling Proline Production. Plant Cell Online. 11: 1995-2012.

Cai H, Zhou Y, Xiao J, Li X, Zhang Q, Lian X (2009) Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 28: 527-537.

Cao H, Guo S, Xu Y, Jiang K, Jones AM, Chong K (2011) Reduced expression of a gene encoding a Golgi localized monosaccharide transporter (OsGMST1) confers hypersensitivity to salt in rice (Oryza sativa). J. Exp. Bot. 62: 4595-4604.

Cha-um S, Charoenpanich A, Roytrakul S, Kirdmanee C (2009) Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Acta Physiol. Plant. 31: 477-486.

Chan Z, Grumet R, Loescher W (2011) Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes. J. Exp. Bot. 62: 4787-4803.

Chao DY, Luo YH, Shi M, Luo D, Lin HX (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res. 15: 796-810.

Çiçek N, Çakırlar H (2008) Effects of Salt Stress on Some Physiological and Photosynthetic Parameters at Three Different Temperatures in Six Soya Bean (Glycine max L. Merr.) Cultivars. J. Agron. Crop Sci. 194: 34-46.

Cuin T, Shabala S (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta. 225: 753-761.

De Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JTn (2003) Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ. Exp. Bot. 49: 107-120.

Dooki AD, Mayer-Posner FJ, Askari H, Zaiee A-a, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics. 6: 6498-6507.

Eckardt NA (2000) Sequencing the Rice Genome. Plant Cell Online. 12: 2011-2017.

Fumagalli E, Baldoni E, Abbruscato P, Piffanelli P, Genga A, Lamanna R, Consonni R (2009) NMR Techniques Coupled with Multivariate Statistical Analysis: Tools to Analyse Oryza sativa Metabolic Content under Stress Conditions. J. Agron. Crop Sci. 195: 77-88.

Gao J, Zhang S, Cai F, Zheng X, Lin N, Qin X, Ou Y, Gu X, Zhu X, Xu Y, Chen F (2012) Characterization, and expression profile of a phenylalanine ammonia lyase gene from Jatropha curcas L. Mol. Biol. Rep. 39: 3443-3452.

Good AG, Zaplachinski ST (1994) The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus. Physiol. Plant. 90: 9-14.

Greenway H, Munns R (1980) Mechanisms of Salt Tolerance in Nonhalophytes. Ann. Rev. Plant Physiol. 31: 149-190.

Hanson AD, Roje S (2001) One-Carbon Metabolism In Higher Plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52: 119-137.

Hemm MR, Rider SD, Ogas J, Murry DJ, Chapple C (2004) Light induces phenylpropanoid metabolism in Arabidopsis roots. Plant J. 38: 765-778.

Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol. Biol. 43: 103-111.

Hu CA, Delauney AJ, Verma DP (1992) A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc. National Acad. Sci. 89: 9354-9358.

Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. National Acad. Sci. 103: 12987-12992.

Ibraheem O, Dealtry G, Roux S, Bradley G (2011) The Effect of Drought and Salinity on the Expressional Levels of Sucrose Transporters in Rice ('Oryza sativa' Nipponbare) Cultivar Plants. Plant Omics. 4: 68-74.

Ishikawa T, Takahara K, Hirabayashi T, Matsumura H, Fujisawa S, Terauchi R, Uchimiya H, Kawai-Yamada M (2010) Metabolome Analysis of Response to Oxidative Stress in Rice Suspension Cells Overexpressing Cell Death Suppressor Bax Inhibitor-1. Plant Cell Physiol. 51: 9-20.

Jacobs A, Lunde C, Bacic A, Tester M, Roessner U (2007) The impact of constitutive heterologous expression of a moss Na+ transporter on the metabolomes of rice and barley. Metabolomics. 3: 307-317.

Janz D, Behnke K, Schnitzler J-P, Kanawati B, Schmitt-Kopplin P, Polle A (2010) Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol. 10: 150.

Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene Expression Profiles during the Initial Phase of Salt Stress in Rice. Plant Cell Online. 13: 889-906.

Kempa S, Krasensky J, Dal Santo S, Kopka J, Jonak C (2008) A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism. PLoS ONE. 3: e3935.

Khan M, Panda S (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Act. Physiol. Plant. 30: 81-89.

Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J. Exp. Bot. 58: 415-424.

Kovács Z, Simon-Sarkadi L, Sovány C, Kirsch K, Galiba G, Kocsy G (2011) Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Sci. 180: 61-68.

Kumar V, Shriram V, Kavi Kishor P, Jawali N, Shitole M (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by overexpressing P5CSF129A gene. Plant Biotechnol. Rep. 4: 37-48.

Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta. 228: 367-381.

Lehmann M, Laxa M, Sweetlove L, Fernie A, Obata T (2012) Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress. Metabolomics. 8: 143-153.

Lemire J, Milandu Y, Auger C, Bignucolo A, Appanna VP, Appanna VD (2010) Histidine is a source of the antioxidant, α-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress. FEMS Microbiol. Lett. 309: 170-177.

Lemoine R (2000) Sucrose transporters in plants: update on function and structure. BBA Biomembranes. 1465: 246-262.

Li X-J, Yang M-F, Chen H, Qu L-Q, Chen F, Shen S-H (2010) Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. BBA Proteins and Proteomics. 1804: 929-940.

Liu HUA, Wang Q, Yu M, Zhang Y, Wu Y, Zhang H (2008) Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant Cell  Environ. 31: 1325-1334.

Lutts S, Majerus V, Kinet JM (1999) NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 105: 450-458.

Majumder AL, Sengupta S, Goswami L (2010) Osmolyte Regulation in Abiotic Stress Adaptation in Plants. In: Pareek A, Sopory SK, Bohnert HJ (eds). Springer Netherlands, pp 349-370.

Moradi F, Ismail AM (2007) Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice. Ann. Bot. 99: 1161-1173.

Munns R, Tester M (2008) Mechanisms of Salinity Tolerance. Ann. Rev. Plant Biol. 59: 651-681.

Murillo-Amador B, Troyo-Diéguez E, García-Hernández JL, López-Aguilar R, Ávila-Serrano NY, Zamora-Salgado S, Rueda-Puente EO, Kaya C (2006) Effect of NaCl salinity in the genotypic variation of cowpea (Vigna unguiculata) during early vegetative growth. Sci. Hort. 108: 423-431.

Nishiyama Y, Yun C-S, Matsuda F, Sasaki T, Saito K, Tozawa Y (2010) Expression of bacterial tyrosine ammonia-lyase creates a novel p -coumaric acid pathway in the biosynthesis of phenylpropanoids in Arabidopsis. Planta. 232: 209-218.

Pattanagul W, Thitisaksakul M (2008) Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian J. Exp. Biol. 46: 736-742.

Rai VK, Sharma UD (1991) Amino acids can modulate ABA induced tomatal closure, stomatal resistance and K+ fluxes in Vicia faba  leaves. Beitr. z. Biol. d. Pflanzen 66: 393-405.

Ray S, Dansana P, Giri J, Deveshwar P, Arora R, Agarwal P, Khurana J, Kapoor S, Tyagi A (2011) Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice. Func. Integr. Genomics. 11: 157-178.

Renault H, Roussel V, El Amrani A, Arzel M, Renault D, Bouchereau A, Deleu C (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol. 10: 20.

Rolletschek H, Hajirezaei M-R, Wobus U, Weber H (2002) Antisense-inhibition of ADP-glucose pyrophosphorylase in Vicia narbonensis seeds increases soluble sugars and leads to higher water and nitrogen uptake. Planta. 214: 954-964.

Sakr M, El-Sarkassy N, Fuller M (2012) Osmoregulators proline and glycine betaine counteract salinity stress in canola. Agron. Sustain. Dev.: 1-8.

Schneider S, Schneidereit A, Konrad KR, Hajirezaei M-R, Gramann M, Hedrich R, Sauer N (2006) Arabidopsis INOSITOL TRANSPORTER4 Mediates High-Affinity H+ Symport of Myoinositol across the Plasma Membrane. Plant Physiol. 141: 565-577

Sharma S, Villamor JG, Verslues PE (2011) Essential Role of Tissue-Specific Proline Synthesis and Catabolism in Growth and Redox Balance at Low Water Potential. Plant Physiol. 157: 292-304.

Shu L, Lou Q, Ma C, Ding W, Zhou J, Wu J, Feng F, Lu X, Luo L, Xu G, Mei H (2011) Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought. Proteomics. 11: 4122-4138.

Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol. Plant. 132: 199-208.

Siahpoosh MR, Sanchez DH, Schlereth A, Scofield GN, Furbank RT, van Dongen JT, Kopka J (2012) Modification of OsSUT1 gene expression modulates the salt response of rice (Oryza sativa cv. Taipei 309). Plant Sci. 182: 101-111.

Siringam K, Juntawong N, Cha-um S, Kirdmanee C (2011) Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice (Oryza sativa L. spp. indica) roots under isoosmotic conditions. African J. Biotechnol. 10: 1340-1346.

Thakur P, Rai V (1985) Exogenously supplied amino acids and water deficits in Zea mays cultivars. Biol. Plant. 27: 458-461.

Thu Hoai NT, Shim IS, Kobayashi K, Kenji U (2003) Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regul. 41: 159-164.

Ueda A, Shi W, Sanmiya K, Shono M, Takabe T (2001) Functional Analysis of Salt-Inducible Proline Transporter of Barley Roots. Plant Cell Physiol. 42: 1282-1289

Ueda A, Shi W, Shimada T, Miyake H, Takabe T (2008) Altered expression of barley proline transporter causes different growth responses in Arabidopsis. Planta 227: 277-286.

Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative Transcriptional Profiling of Two Contrasting Rice Genotypes under Salinity Stress during the Vegetative Growth Stage. Plant Physiol. 139: 822-835.

Wang H, Liu D, Sun J, Zhang A (2005) Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. J. Plant Physiol. 162: 81-89.

Widodo, Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J. Exp. Bot. 60: 4089-4103.

Williams LE, Lemoine R, Sauer N (2000) Sugar transporters in higher plants – a diversity of roles and complex regulation. Trends Plant Sci. 5: 283-290.

Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem. Biophys. Res. Commun. 352: 486-490.

Yoshida SF, Lock J, Gomez K (1976) A laboratory manual for the physiological studies of rice. IRRI, Manila: 54.

Zhang J, Zhang Y, Du Y, Chen S, Tang H (2011) Dynamic Metabonomic Responses of Tobacco (Nicotiana tabacum) Plants to Salt Stress. J. Proteome Res. 10: 1904-1914

Zhou L, Bokhari SA, Dong C-J, Liu J-Y (2011) Comparative Proteomics Analysis of the Root Apoplasts of Rice Seedlings in Response to Hydrogen Peroxide. PLoS ONE. 6: e16723.

Zhu J-K (2003) Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6: 441-445.