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ABSTRACT
Sesquiterpene lactones (STLs) are a group of bioactive secondary metabolites synthesized in

the sunflower mevalonate pathway through the action of key upstream enzymes, including
HaGAS1/2, HaGAO1/2, HaCOS, and HaG8H. These
dehydrocostuslactone, 8-epixanthatin, and tomentosin, play important biological roles, yet the

compounds, such as

precise genes involved in their biosynthesis remain incompletely characterized. In this study,
transcriptomic data under treatments with ethylene, salicylic acid, methyl jasmonate, and
polyethylene glycol were analyzed, and several candidate genes were identified using gene co-
expression network analysis, including putative costunolide synthases (LOC110928784,
LOC110928786) and genes involved in DBR2-like reduction reactions (LOC110893694,
LOC110886996). Promoter analysis of key pathway genes revealed gene-specific distributions
of cis-regulatory motifs, including W-box, G-box, GCC-box, bZIP, and CBF2/RAA. Several
candidate genes encoding bZIP (XP_022029119 and XP_022023437) and ERF
(XP_021969365, XP_022017763, and XP_022002255) transcription factors were also
identified as potential regulators of key pathway genes. Gene expression analysis by gPCR in
six selected genes showed that upstream genes (HaGAS1, HaGAO1, HaG8H, HaCQOS) were
predominantly expressed in leaves and glandular trichomes. In contrast, downstream genes
(LOC110928784, LOC110893694) exhibited preferential expression in roots, indicating spatial
partitioning of STL biosynthesis in sunflower. Overall, these findings reveal new components
of the STL biosynthetic pathway and its regulatory factors, providing valuable targets for

metabolic engineering and novel biocontrol strategies in sunflower.
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Figure 1. Co-expression networks of target genes (HaGAS1/2, HaGAO1/2, HaCOS, HaG8H, HaES) and their partners
under ethylene, SA, MeJA, and PEG treatments in sunflower. Yellow: target genes; orange: co-expressed genes
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Table 1. Primers used for qRT-PCR analysis in sunflower

Gene Primer (5'-3") Ta(°C) Reference
GTGGGACATTAGTGCTATGAATCAA
HaGAS1 TCACCCATTCCCACTAAAGCA 60 -
AL CCGCCCCAAACGGAAGATACTC o Froy etal. 2018

GATCCCGAATACTGGAAAGACGC

TACGTTAGGCGATGTTAGCGAAGAC

HaG8H CACGTGGTCTACTTCTGTGTTCCCTCAA 64 Frey etal. 2018
GATACTTATAAATGCGTGGGCTTGTG
HaCoS CGGCCCCAAACGGAAGGAACTC 64 Frey etal. 2018
Acting AACTATTATGTAAGACTGGCAGAC o ~
TCACAACCACTCTCCAACTAC
TGCCCCATCCTTTTCTGCTA
LOC110928784 TGGCCAAGCTTCTAAGCACT 59 -
LOC110893604 TAGGGCGGTGAACAGCATAC " _

ACCTGGTACATGCGGGAATC
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Table 2. Amino acid sequence identity between sunflower candidate genes and their orthologs in Asteraceae species
(BLAST, E <0.05)

Species Cichorium Cynara cardunculus Tanacetum Tanacetum Lactuca Erigeron Artemisia
Genes intybus var. scolymus parthenium cinerariifolium sativa canadensis annua
HaGAS1 67.03 69.29 84.55 84.55 88.73 64.75 84.55
HaGAS2 67.58 70.79 84.55 84.55 88.1 65.31 84.55
HaGAO1 89.34 83.68 89.14 53.03 89.34 50.81 89.14
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HaG8H 67.35 66.6 66.46 66.06 66.74 57.32 66.6
LOC110928784 64.8 63.78 62.75 62.75 63.75 57.78 63.91
LOC110928786 64.77 63.18 62.75 62.55 63.75 58.38 63.88
LOC110893694 84.48 84.18 - 86.95 83.67 82.51 84.9
LOC110886996 83.63 83.6 84.87 82.82 81.75 82.25
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Figure 2. A) Exon—intron organization: blue, untranslated regions; yellow, exons; black, introns. B) Conserved motifs
identified using MEME, with colored boxes representing distinct motifs
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Figure 4. Distribution and positions of cis-regulatory elements in the promoter regions of sesquiterpene lactone pathway genes



oy V¥ 50l OV alo o) oyled 203l Jlo lyj (LS (g)olidcun ) (cals 4 pis

oS G saiad lis &S wingy GCC-boX oSl Y
P35 0 o y> g (pl ) dgiome g b ladlons
ROW EEISRY

05 A4S 3 L 5 (elaases U b duglia
95,5 SMERF73 4lie (65,Sles XP_021969365.1
XP_022002255.1 4 XP_022017763.1 L_»;
A. annua ,» AaERF1 5 AaORA 4l o sl 2l
o) A Phe i pwedy] Agr yial3al > a8 sy L
XP_021969365.1 sla ;4 sad oo olis lnasdly
YL__os XP_022002255.1 4 XP_022017763.1
S wge e (g dlS glrosiSoudal laisd
L g u i g Joos BS1 )3 (95 05055 5
awlb ]y Glice LS (slaaigS 3 ERF oglass clagS
S o

IO ERF g bZIP cwsgigy sl ys51 Ly (595!
S 9 (Fg0y9 syl 4
oLS ey )3 (ugiyy SygSe LIS (g pslaiod:
sbag) ola oS (a5 g (S9er9n Sbjloi
5 Slaed 48 LS 5,k )l 45 ERF 4 bZIP
P AP JS3) e85 )18 pb)l 50 ciad Lol
Sz 5l XP_021986660.1 5 « S Lyl
5 XP_022023437.1 55 ¥ 5
13 50l s awwgie ol XP_022029119.1
29— Ll ) &l it ohesl jloows (Jlie
XP_021986660.1 sl 5 4 S g sba
olgls 51 XP_022017763.1 4 XP_021993538.1
2l U awlio 0 500b olis oYL b ol ERF
Sl el ul 35 405 |, Wl oy pien balas
el 55 ol 4 dly SIS jne A5 LS
ol (20 lagusly b basye (oumgig) Jelge
bwgie Olyss cely baas JoSl5 sl Ly jlass
Hews &S Jb 3 s BZIP la 5 5l (oolaws jo ol

,]_) u.g}“ s

bZIP - slag; gle e il -8 Slgonls Jito
ERF , (XP_021983768.1, XP_022023437.1)
Ly ol ol 3,5 camw |, (XP_021986660.1)

Ly bass 0 ERF (sLacSglgon Siijolid Juloxs
Ol ST 50 (y35Y (1 5 (295 s Fiemiges ol
oS8l 5 ERF LS gan Sijshd Joubos
XP_022017763.1 (sLayy; 45 (0 JSKis) ol oylis
< 4y XP_021993538.1 4 XP_021990593.1
5 AT1G19210 AT2G44840 L a5
el s s as as eanasgs AT3G23240
Lol 4 Conglio (Sl slaady) 43) o s
A5 G (ST e g el 5 )9 dlopuo
Hu et al., 2018; Liao et al., 2024; Lv et al., )
XP_021969365.1 5 .(2021; Mao et al., 2016
Cenglie yiol38l )3 45" 0l 02lgils o AT2G47520 L
ROS Jols aslass o Fusarium graminearum 4
L XP_022002255.1 ) 45 J> o el J 3
A Cnglie jd 4 S U snd s AT5GA7220
Stemphylium s Alternaria alternata
Mao et al., 2016; Yao et ) cusl ,330 lycopersici
L XP_022019003.1 ; ;p—ixen .(al., 2017
Ay el )5 4 00 )S edlgl s o AT1G28360
G (2l ygSee Ml g )dny g S5 SIS (i
.(Chandler & Werr, 2020; Xu et al., 2022) »,l>
JLasl b AGERFL & wlosls b5 paiiy lalllas

9ADS sLa ygegy 1 RAA 3 CBF2 slacisss 4
YU et ) ad e ialidl ]y ot swes)| g5 CYPT1AVL
G Sge gl aS o i Lo sla Lo (al., 2012
—» HaG8H 4 HaGAS2 HaGAS1 lLa; CBF2
4 HaGAO2 4 HaGAOL slayyj 4 olls S pls
slag; RAA i sge dlys a5 ol Y oY i
HaGAOL 1> 4 (4l)s HaGAS2 4 HaGAS1
oLl A plus e HaG8H 4 HAGAO2 oSl & (ol
S. miltiorrhiza p» od oLwbs oL S5l ¥ HaES
byye sla s GCC-DOX (5 y909y wmolic SMERF73
5KSLL CPS1 DXR1) yguiil 5 wgn L
Jué |y Lol ol g 05,5 oLk |y (CYP76AH3
93 Lo oyl oo > (Zheng et al., 2021) uS o
Y sl cwipas HaG8H g HaGAO2 (s Sl o3



e 3 ool b )l ST 53 oy 3 5 006 e Fioger )3 S (o g3g) (slysSB g Loy olulid 1oyl o g Bl5sesce

oA

aS sm e it ddlllas sl gl (S jebass
opls (Lay] ohagn St (amgig) (sla)pSe
bl 4 atly S8 4536 oo biss ERF
o g JoSo (185 J5SIS ol y 5 Slgenle it
Lo o] oekals 50 (s29000 sl (285 Sl Sl

S o iy

oo i 4 S il laton p iy llas
5 (Song et al., 2019) Ll ,LS 5> lbgewls e
Bloa ST 5,155 1y (Sad b 6,85k j5 bZIP <l
Sl Sl jlews > (Castilhos et al., 2014)
5 cilh o wgie oLy XP_021986660.1 5 3.5
5 XP_022029119.1 XP_021983768.1 ¢la;
Aol s (Sasl el s XP_022023437.1

b e smslginal JolS Jlgp ol 2 (usmgiter)] (slacSglgan g of3, 5000 13 ERF 5 DZIP ngig) (slajgSTé (sl Ssishd 853 .0 JSuid
o Sl g o KT (glo o3 (sloadls Lo igSY (i jo Sthwser > Jla] (1 g slS Sgibio (clo o b Lo o (sl
A3 Ui |y G| SlacSgen
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biosynthesis. Red branches indicate sunflower genes, and Blue branches indicate Arabidopsis homologs
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