Strategies of Barley Improvement under water stress: Responses, ‎Approaches and Management ‎

Document Type : Review

Authors

1 Department of Molecular Cell Biology, Faculty of Biotechnology, Shahid Beheshti University, Tehran, Iran.

2 Agricultural Biotechnology Research Institute of Iran, Department of Systems and Synthetic Biology, Karaj, Iran

3 Agricultural Biotechnology Research Institute of Iran, Department of Systems and Synthetic Biology, Karaj, Iran Agricultural Research, Education and Extension Organization (AREEO), Iran

Abstract

Plants use a variety of strategies to cope with abiotic stress, depending on the species and the growth of the plant. Abiotic stresses such as drought is the most important stress that affects yield of agricultural products. In addition, drought stress is one of the main limiting factors in plant growth, it can also inhibit respiration, photosynthesis, and thus affects the growth and physiological metabolism of plants. Plants activate several mechanisms such as morphological and structural changes as well as the expression of drought-resistant genes, the synthesis of hormones and osmotic regulators to reduce drought stress. Drought accelerates grain leaf senescence, altering the expression of thousands of genes and ultimately affecting grain protein content and grain yield. However, the genotypic variability exists for drought induced disruption and tolerance in barley. In this review, the approaches can help for improving barley genotypes in response to drought stress through breeding and physiological traits, genetic engineering, and marker-assisted selection (MAS). We detected genes and proteins involved in response to drought-tolerance using proteomics, transcriptomics and metabolomics approaches. Also, the introduced Quatitatives Traits Loci (QTLs) related to yield and Stay green and physiological traits found in this study can be used for MAS in barley improvement for drought tolerance in the future. In particular, comparative studies of genetically diverse germplasm exposed to adverse conditions such as drought provide valuable insights into plant responses to stress and create information on biochemical pathways involved in adaptation to environmental limitations. Proper evaluation of omics data can help the biomarker discovery.

Keywords

Main Subjects


Al Abdallat, A. M., Ayad, J. Y., Abu Elenein, J. M., Al Ajlouni, Z. & Harwood, W. A. (2014). Overexpression of the transcription factor HvSNAC1 improves droughttoleranceinbarley (Hordeum vulgare L.).Molular Breeding. 33,401–414.doi: 10.1007/s11032-013-9958-1 Alexander, RD, Wendelboe-Nelson, C & Morris, PC. (2019). 'The barley transcription factor HvMYB1 is a positive regulator of drought tolerance', Plant Physiology and Biochemistry, vol. 142, pp. 246-253. https://doi.org/10.1016/j.plaphy.2019.07.014 Badigannavar, A., Teme, N., de Oliveira, AC., Li, G., Vaksmann, M., Viana, VE., Ganapathi, TR., & Sarsu, F. (2018). Physiological, genetic and molecular basis of drought resilience in sorghum [Sorghum bicolor (L.) Moench]. Indian Journal of Plant Physiology. 23(4):670-88. Barnabás, B., Jäger, K. & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment. 31:11–38. Bazargani, M.M., Sarhadi, E., Bushehri, A.A.S., Matros, A., Mock, H.P., Naghavi, M.R., Hajihoseini, V., Mardi, M., Hajirezaei, M.R., Moradi, F. & Ehdaie, B., (2011). A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. Journal of proteomics, 74(10), 1959-1973. Bhatnagar-Mathur,P.,Vadez,V. & Sharma,K.K. (2008). Transgenicapproaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Reports. 27, 411-424. doi: 10.1007/s00299-007-0474-9 Bita, C, & Gerats T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in plant science. 31(4), 273. Borrell, A.K., Mullet, J.E., George-Jaeggli, B., van Oosterom, E.J., Hammer, G.L., Klein, P.E. & Jordan, D.R. (2014). Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. Journal of experimental botany, 65(21), 6251-6263. Boutheina, D., Amel, M., Sami, K., Fatma, B. S., & Bassem, M. (2022). Agricultural water management practices in mena region facing climatic challenges and water scarcity. Water Conservation & Management (WCM), 6(1), 39-44. Bowne, J. B., Erwin, T. A., Juttner, J., Schnurbusch, T., Langridge, P., Bacic, A., & Roessner, U. (2012). Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Molecular plant, 5(2), 418-429. Cattivelli L., Rizza F., Badeck F.W., Mazzucotelli E., Mastrangelo A.M., Francia E., Mare C., Tondelli A. & Stanca A.M. (2008). Drought tolerance improvement in crop plants: An integrative view from breeding to genomics, Field Crop. Research. 105, 1–14. Chaudhary, J., Khatri, P., Singla, P., Kumawat, S., Kumari, A., Vikram, A., Jindal, S.K., Kardile, H., Kumar, R., Sonah, H. & Deshmukh, R., (2019). Advances in omics approaches for abiotic stress tolerance in tomato. Biology, 8(4), 90. Chen M., Wang Q.Y., Cheng X.G., Xu Z.S., Li L.C., Ye X.G., Xia L.Q. & Ma Y.Z. (2007). GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants, Biochem. Bioph. Res. Co. 353, 299-305. Chen, G., Sagi, M., Weining, S., Krugman, T., Fahima, T., Korol, A. B., & Nevo, E. (2004). Wild barley eibi1 mutation identifies a gene essential for leaf water conservation. Planta, 219, 684-693. Chen, J., Tang, L., Shi, P., Yang, B., Sun, T., Cao, W. & Zhu, Y., (2017). Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage. Protoplasma, 254, 935-943. Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., De Los Campos, G., ... & Varshney, R. K. (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends in plant science, 22(11), 961-975. Cseri, A., Sass, L., Torj ¨ ´ek, O., Pauk, J., Vass, I. & Dudits, D. (2013). Monitoring drought responses of barley genotypes with semi-robotic phenotyping platform and association analysis between recorded traits and allelic variants of some stress genes.Aust. J. Crop Sci. 7, 1560–1570. Daszkowska-Golec, A., Mehta, D., Uhrig, R. G., Brąszewska, A., Novak, O., Fontana, I. M., ... & Marzec, M. (2023). Multi-omics insights into the positive role of strigolactone perception in barley drought response. BMC Plant Biology, 23(1), 445. Dewez, D., Goltsev, V., Kalaji, H.M. & Oukarroum, A., (2018). Inhibitory effects of silver nanoparticles on photosystem II performance in Lemna gibba probed by chlorophyll fluorescence. Current plant biology, 16, 15-21. Dezhsetan, S., Behnamian, M., Fathi Ajirlou, S., Ebrahimi, M. A., & Yazdani, B. (2018). Identification, classification and bioinformatics expression analysis of NAC transcription factor gene family in Hordeum vulgare cv. Morex genome. Crop Biotechnology, 8(21), 17-35. Diab, A.A., Teulat-Merah, B., This, D., Ozturk, N.Z., Benscher, D. & Sorrells, M.E., (2004). Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theoretical and Applied Genetics, 109, 1417-1425. Díaz, P., Borsani, O., Marquez, A. N. T. O. N. I. O., & Monza, J. O. R. G. E. (2005). Nitrogen metabolism in relation to drought stress responses in cultivated and model Lotus species. Lotus Newsletter, 35(1), 83-92. Du Plessis, S.S., Kashou, A.H., Benjamin, D.J., Yadav, S.P. & Agarwal, A. (2011). Proteomics: a subcellular look at spermatozoa. Reproductive Biology and Endocrinology, 9, 1-12. Ehdaie, B., Alloush, G. A., Madore, M. A & J. G. Waines. (2006). Genotypic variation for stem reserves and mobilization in wheat: I. Postanthesis changes in internode dry matter. 46: 735-746. Esmaeilpour-Jahromi, M., Ahmadi, A., Lunn, J.E., Abbasi, A., Poustini, K. & Joudi, M. (2012). Variation in grain weight among Iranian wheat cultivars: the importance of stem carbohydrate reserves in determining final grain weight under source limited conditions. Australian Journal of Crop Science, 6(11), 1508-1515. Fahad, S., Ihsan, M.Z., Khaliq, A., Daur, I., Saud, S., Alzamanan, S., Nasim, W., Abdullah, M., Khan, I.A., Wu, C. & Wang, D. (2018). Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Archives of Agronomy and Soil Science, 64(11), 1473-1488. Fan, Y., Shabala, S., Ma, Y., Xu, R. & Zhou, M. (2015). Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics 16:43. doi: 10.1186/s12864-015-1243-8. Farooq, M., Gogoi, N., Barthakur, S., Baroowa, B., Bharadwaj, N., Alghamdi, S.S. & Siddique, K.H. (2017). Drought stress in grain legumes during reproduction and grain filling. Journal of Agronomy and Crop Science, 203(2), 81-102. Fracasso, A., Trindade, L.M. & Amaducci, S. (2016). Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biology, 16(1), pp.1-18. Gaur, P.M., Samineni, S., Krishnamurthy, L., Varshney, R.K., Kumar, S., Ghanem, M.E., Beebe, S.E., Rao, I.M., Chaturvedi, S.K., Basu, P.S. & Nayyar, H. (2014). High temperature tolerance in grain legumes. Ghaffari, M. R., Von Wirén, N., Humbeck, K., & Franken, P. (2016). Transcriptome analysis of leaf tissue in contrasting lines of barley for biomass formation at the reproductive stage. Crop Biotechnology, 6(13), 27-39. (In Persian). Ghatak, A., Chaturvedi, P. & Weckwerth, W., (2018). Metabolomics in plant stress physiology. Plant genetics and molecular biology, 187-236. Goggin, D.E & T. L. Setter. (2004). Fructosyltransferase activity and fructan accumulation during development in wheat exposed to terminal drought. Functional Plant Biology. 31:11-21. González‐Camacho, J. M., Ornella, L., Pérez‐Rodríguez, P., Gianola, D., Dreisigacker, S., & Crossa, J. (2018). Applications of machine learning methods to genomic selection in breeding wheat for rust resistance. The plant genome, 11(2), 170104. Gürel, F., Öztürk, Z.N., Uçarlı, C. & Rosellini, D. (2016). Barley genes as tools to confer abiotic stress tolerance in crops. Frontiers in plant science, 7, 1137. Gururani, M.A., Venkatesh, J. & Tran, L.S.P. (2015). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular plant, 8(9), 1304-1320. Hajibarat, Z., Saidi, A., Ghazvini, H., & Hajibarat, Z. (2023). Comparative analysis of physiological traits and gene expression patterns in nitrogen deficiency among barley cultivars. Journal of Genetic Engineering and Biotechnology, 21(1), 110. Hammad, S.A. & Ali, O.A. (2014). Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Annals of Agricultural Sciences, 59(1), 133-145. Harb, A., Simpson, C., Guo, W., Govindan, G., Kakani, V. G., & Sunkar, R. (2020). The effect of drought on transcriptome and hormonal profiles in barley genotypes with contrasting drought tolerance. Frontiers in plant science, 11, 618491. Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R. & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International journal of molecular sciences, 14(5), 9643-9684. Hassan, F.S.C., Solouki, M., Fakheri, B.A., Nezhad, N.M. & Masoudi, B. (2018). Mapping QTLs for physiological and biochemical traits related to grain yield under control and terminal heat stress conditions in bread wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 24, 1231-1243. Hein, I., Barciszewska-Pacak, M., Hrubikova, K., Williamson, S., Dinesen, M., Soenderby, I. E., ... & Lacomme, C. (2005). Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiology, 138(4), 2155-2164. Hensel, G., Himmelbach, A., Chen, W., Douchkov, D. K., & Kumlehn, J. (2011). Transgene expression systems in the Triticeae cereals. Journal of Plant Physiology, 168(1), 30-44. Hong, Y., Ni, S.J. & Zhang, G.P. (2020). Transcriptome and metabolome analysis reveals regulatory networks and key genes controlling barley malting quality in responses to drought stress. Plant physiology and biochemistry, 152, 1-11. Huang, J. P., Tunc-Ozdemir, M., Chang, Y., & Jones, A. M. (2015). Cooperative control between AtRGS1 and AtHXK1 in a WD40-repeat protein pathway in Arabidopsis thaliana. Frontiers in Plant Science, 6, 851. Hübner, S., Korol, A.B. & Schmid, K.J. (2015). RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. BMC plant biology, 15(1), 1-14. Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S. & Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in plant science, 9, .393. Hütsch, B.W., Jahn, D. & Schubert, S. (2019). Grain yield of wheat (Triticum aestivum L.) under long‐term heat stress is sink‐limited with stronger inhibition of kernel setting than grain filling. Journal of Agronomy and Crop Science, 205(1),.22-32. Istanbuli, T., Baum, M., Touchan, H., & Hamwieh, A. (2020). Evaluation of morpho-physiological traits under drought stress conditions in barley (Hordeum vulgare L.). Photosynthetica, 58(4). Jabbari, M., Fakheri, B. A., Aghnoum, R., Mahdi Nezhad, N., & Ataei, R. (2018). GWAS analysis in spring barley (Hordeum vulgare L.) for morphological traits exposed to drought. PloS one, 13(9), e0204952. Joshi, A.K., Kumari, M., Singh, V.P., Reddy, C.M., Kumar, S., Rane, J. & Chand, R. (2007). Stay green trait: variation, inheritance and its association with spot blotch resistance in spring wheat (Triticum aestivum L.). Euphytica, 153, 59-71. Kaur, S., Bhardwaj, R. D., Kaur, J., & Kaur, S. (2022). Induction of defense-related enzymes and pathogenesis-related proteins imparts resistance to barley genotypes against spot blotch disease. Journal of Plant Growth Regulation, 1-15. Kaur, S., Seem, K., Duhan, N., Kumar, S., Kaundal, R., & Mohapatra, T. (2023). Transcriptome and physio-biochemical profiling reveals differential responses of rice cultivars at reproductive-stage drought stress. International Journal of Molecular Sciences, 24(2), 1002. Kamal, N.M., Gorafi, Y.S.A., Abdelrahman, M., Abdellatef, E. & Tsujimoto, H. (2019). Stay-green trait: A prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. International journal of molecular sciences, 20(23), 5837. Kumar, S., Kumar, S., Krishnan, G. S., & Mohapatra, T. (2022). Molecular basis of genetic plasticity to varying environmental conditions on growing rice by dry/direct-sowing and exposure to drought stress: Insights for DSR varietal development. Frontiers in Plant Science, 13, 1013207. Kebede, A., Kang, M. S., & Bekele, E. (2019). Advances in mechanisms of drought tolerance in crops, with emphasis on barley. Advances in agronomy, 156, 265-314. Krasensky, J. & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of experimental botany, 63(4), 1593-1608. Lara, P., Onate-Sánchez, L., Abraham, Z., Ferrándiz, C., Díaz, I., Carbonero, P., & Vicente-Carbajosa, J. (2003). Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2. Journal of Biological Chemistry, 278(23), 21003-21011. Li, L., Xing, J., Ma, H., Liu, F., & Wang, Y. (2021). In situ determination of guard cell ion flux underpins the mechanism of ABA-mediated stomatal closure in barley plants exposed to PEG-induced drought stress. Environmental and Experimental Botany, 187, 104468. Li, Y., Liu, D., Zong, Y., Jiang, L., Xi, X., Cao, D., ... & Liu, B. (2020). New D hordein alleles were created in barley using CRISPR/Cas9 genome editing. Cereal Research Communications, 48, 131-138. Liliane TN, Charles MS. 2020. Factors affecting yield of crops. Agronomy-Climate Change & Food Security. 15:9. Manju, Yadav, S. K., Wankhede, D. P., Saroha, A., Jacob, S. R., Pandey, R., ... & Kaur, V. (2023). Screening of barley germplasm for drought tolerance based on root architecture, agronomic traits and identification of novel allelic variants of HVA1. Journal of Agronomy and Crop Science. Marchetti, C.F., Ugena, L., Humplík, J.F., Pol´ ak, M., Cavar´ Zeljkovi´c, S., Podleˇsakov ´ ´ a, K., Fürst, T., De Diego, N. & Spíchal, L. (2019). A novel image-based screening method to study water-deficit response and recovery of barley populations using canopy dynamics phenotyping and simple metabolite profiling. Front. Plant Sci. 10, 1252. https://doi.org/10.3389/fpls.2019.01252. Mascher, M., Richmond, T. A., Gerhardt, D. J., Himmelbach, A., Clissold, L., Sampath, D., ... & Stein, N. (2013). Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. The Plant Journal, 76(3), 494-505. Meitzel, T., Radchuk, R., McAdam, E. L., Thormählen, I., Feil, R., Munz, E., ... & Borisjuk, L. (2021). Trehalose 6‐phosphate promotes seed filling by activating auxin biosynthesis. New Phytologist, 229(3), 1553-1565. Michaletti, A., Naghavi, M.R., Toorchi, M., Zolla, L. & Rinalducci, S. (2018). Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Scientific reports, 8(1), p.5710. Mikołajczak, K., Ogrodowicz, P., wiek-Kupczynska, ´ H., Weigelt-Fischer, K., Mothukuri, S. R., Junker, A., Altmann, T., Krystkowiak, K., Adamski, T., Surma, M., Kuczynska, A. & Krajewski, P. (2020). Image phenotyping of spring barley (Hordeum vulgare L.) RIL population under drought: selection of traits and biological interpretation. Front. Plant Sci. 11, 743. https://doi.org/10.3389/fpls.2020.00743. Monteverde, E., Rosas, J. E., Blanco, P., Pérez de Vida, F., Bonnecarrère, V., Quero, G., ... & McCouch, S. (2018). Multienvironment models increase prediction accuracy of complex traits in advanced breeding lines of rice. Crop Science, 58(4), 1519-1530. Mora, F., Quitral, Y.A., Matus, I., Russell, J., Waugh, R. & Del Pozo, A. (2016). SNP-based QTL mapping of 15 complex traits in barley under rain-fed and well-watered conditions by a mixed modeling approach. Frontiers in plant science, 7, 909. Moualeu-Ngangué, D., Dolch, C., Schneider, M., Léon, J., Uptmoor, R. & Stützel, H., (2020). Physiological and morphological responses of different spring barley genotypes to water deficit and associated QTLs. PloS One, 15(8), p.e0237834. Nagaraj, V.J., Altenbach, D., Galati, V., Lüscher, M., Meyer, A.D., Boller, T. & Wiemken, A. (2004). Distinct regulation of sucrose: sucrose‐1‐fructosyltransferase (1‐SST) and sucrose: fructan‐6‐fructosyltransferase (6‐SFT), the key enzymes of fructan synthesis in barley leaves: 1‐SST as the pacemaker. New Phytologist, 161(3), 735-748. Nazari, M., Moosavi, S. S., Maleki, M., & Jamshidi Goharrizi, K. (2020). Chloroplastic acyl carrier protein synthase I and chloroplastic 20 kDa chaperonin proteins are involved in wheat (Triticum aestivum) in response to moisture stress. Journal of Plant Interactions, 15(1), 180-187. Ndlovu, E., Van Staden, J. & Maphosa, M. (2021). Morpho-physiological effects of moisture, heat and combined stresses on Sorghum bicolor [Moench (L.)] and its acclimation mechanisms. Plant Stress, 2, p.100018. Obidiegwu, J.E., Bryan, G.J., Jones, H.G. & Prashar, A., 2015. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Frontiers in plant science, 6, 542. Ogrodowicz, P., Mikołajczak, K., Kempa, M., Mokrzycka, M., Krajewski, P., & Kuczyńska, A. (2023). Genome-wide association study of agronomical and root-related traits in spring barley collection grown under field conditions. Frontiers in Plant Science, 14, 1077631. Parida, A.K., Panda, A. & Rangani, J. (2018). Metabolomics-guided elucidation of abiotic stress tolerance mechanisms in plants. In Plant metabolites and regulation under environmental stress (89-131). Academic Press. Paul, M. J., Primavesi, L. F., Jhurreea, D., & Zhang, Y. (2008). Trehalose metabolism and signaling. Annu. Rev. Plant Biol., 59, 417-441. Pham, A.T., Maurer, A., Pillen, K., Brien, C., Dowling, K., Berger, B., Eglinton, J.K. & March, T.J., (2019). Genome-wide association of barley plant growth under drought stress using a nested association mapping population. BMC Plant Biology. 19, 134. Piasecka, A., Sawikowska, A., Kuczyńska, A., Ogrodowicz, P., Mikołajczak, K., Krystkowiak, K., Gudyś, K., Guzy‐Wróbelska, J., Krajewski, P. & Kachlicki, P. (2017). Drought‐related secondary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci. The Plant Journal, 89(5), 898-913. Pirzad, A., Shakiba, M. R., Zehtab-Salmasi, S., Mohammadi, S. A., Darvishzadeh, R., & Samadi, A. (2011). Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L. Journal of Medicinal Plants Research, 5(12), 2483-2488. Rao, S.R., Qayyum, A., Razzaq, A., Ahmad, M., Mahmood, I. & Sher, A., (2012). Role of foliar application of salicylic acid and l-tryptophan in drought tolerance of maize. J. Anim. Plant Sci, 22(3), 768-772. Rischbeck, P., Cardellach, P., Mistele, B., & Schmidhalter, U. (2017). Thermal phenotyping of stomatal sensitivity in spring barley. Journal of Agronomy and Crop Science, 203(6), 483-493. Rohila, J.S., Jain, R.K. &Wu, R., (2002). Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci. 163,525–532. Rollins, J.A., Habte, E., Templer, S.E., Colby, T., Schmidt, J. & Von Korff, M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of experimental botany, 64(11), 3201-3212. Saidi, A., Hajibarat, Z. & Ghaffari, M.R., (2021). The role of effective factors in cell senescence and material remobilization in cereals. Genetic Engineering and Biosafety Journal, 10(1), pp.108-120. Samarah, N. H. (2005). Effects of drought stress on growth and yield of barley. Agronomy for sustainable development, 25(1), 145-149. Sanchez-Díaz, ´ M., García, J.L., Antolín, M.C. & Araus, J.L., (2002). Effects of soil drought and atmospheric humidity on yield, gas exchande and stable carbon isotope composition of barley. Photosynthetica 40, 415–421. https://doi.org/10.1023/A:1022683210334. Sandhu, N. & Kumar, A. (2017). Bridging the rice yield gaps under drought: QTLs, genes, and their use in breeding programs. Agronomy, 7(2), p.27. Sayed, M.A., Nassar, S.M., Moustafa, E.S., Said, M.T., Börner, A. & Hamada, A. (2021). Genetic mapping reveals novel exotic and elite QTL alleles for salinity tolerance in barley. Agronomy, 11(9), 1774. Sehgal, A., Sita, K., Siddique, K.H., Kumar, R., Bhogireddy, S., Varshney, R.K., HanumanthaRao, B., Nair, R.M., Prasad, P.V. & Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in plant science, 9, 1705. Seiler, C., Harshavardhan, V.T., Reddy, P.S., Hensel, G., Kumlehn, J., Eschen-Lippold, L., Rajesh, K., Korzun, V., Wobus, U., Lee, J. & Selvaraj, G. (2014). Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress. Plant physiology, 164(4), 1677-1696. Singh, C.K., Singh, D., Sharma, S., Chandra, S., Tomar, R.S.S., Kumar, A., Upadhyaya, K.C. & Pal, M. (2021). Mechanistic association of quantitative trait locus with malate secretion in lentil (Lens culinaris medikus) seedlings under aluminium stress. Plants, 10(8), 1541. Stallmann, J., Schweiger, R., Pons, C. A., & Müller, C. (2020). Wheat growth, applied water use efficiency and flag leaf metabolome under continuous and pulsed deficit irrigation. Scientific Reports, 10(1), 10112. Templer, S.E., Ammon, A., Pscheidt, D., Ciobotea, O., Schuy, C., McCollum, C., Sonnewald, U., Hanemann, A., Förster, J., Ordon, F. & von Korff, M. (2017). Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. Journal of experimental botany, 68(7), pp.1697-1713. Thabet, S.G., Moursi, Y.S., Karam, M.A., Graner, A. & Alqudah, A.M. (2018). Genetic basis of drought tolerance during seed germination in barley. PLoS One 13, e0206682. Thomas, H. & Howarth, C.J. (2000). Five ways to stay green. Journal of experimental botany, 51(suppl_1), pp.329-337. Wang, L.Y., Liu, J.L., Wang, W.X. & Sun, Y. (2016). Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica, 54, 19-27. Wehner, G.G., Balko, C.C., Enders, M.M., Humbeck, K.K. & Ordon, F.F. (2015). Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. BMC Plant Biol. 15, 125. Wendelboe‐Nelson, C. & Morris, P.C., (2012). Proteins linked to drought tolerance revealed by DIGE analysis of drought resistant and susceptible barley varieties. Proteomics, 12(22),.3374-3385. Witt, S., Galicia, L., Lisec, J., Cairns, J., Tiessen, A., Araus, J. L., ... & Fernie, A. R. (2012). Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Molecular plant, 5(2), 401-417. Wójcik-Jagła, M., Rapacz, M., Tyrka, M., Kościelniak, J., Crissy, K. & Żmuda, K. (2013). Comparative QTL analysis of early short-time drought tolerance in Polish fodder and malting spring barleys. Theoretical and applied genetics, 126, 3021-3034. Wu, C., Cui, K., Wang, W., Li, Q., Fahad, S., Hu, Q., Huang, J., Nie, L., Mohapatra, P.K. & Peng, S. (2017). Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice. Frontiers in Plant Science, 8, p.371. Yang, G., Wang, C., Wang, Y., Guo, Y., Zhao, Y., Yang, C., & Gao, C. (2016). Overexpression of ThVHAc1 and its potential upstream regulator, ThWRKY7, improved plant tolerance of Cadmium stress. Scientific Reports, 6(1), 18752. Yang, Y., Al‐Baidhani, H.H.J., Harris, J., Riboni, M., Li, Y., Mazonka, I., Bazanova, N., Chirkova, L., Sarfraz Hussain, S., Hrmova, M. & Haefele, S. (2020). DREB/CBF expression in wheat and barley using the stress‐inducible promoters of HD‐Zip I genes: impact on plant development, stress tolerance and yield. Plant biotechnology journal, 18(3), 829-844. Yao, X., Wu, K., Yao, Y., Li, J., Ren, Y. & Chi, D. (2017). The response mechanism of the HVA1 gene in hulless barley under drought stress. Italian Journal of Agronomy, 12(4). Yuan, H., Zeng, X., Shi, J., Xu, Q., Wang, Y., Jabu, D., Sang, Z. & Nyima, T. (2018). Time-course comparative metabolite profiling under osmotic stress in tolerant and sensitive Tibetan hulless barley. BioMed research international, 2018. Zadehbagheri, M., Azarpanah, A., & Javanmardi, S. (2014). Proline metabolite transport an efficient approach in corn yield improvement as response to drought conditions. Nature, 566, 76-485. Zhang, P., Liu, Y., Li, M., Ma, J., Wang, C., Su, J. & Yang, D. (2020). Abscisic acid associated with key enzymes and genes involving in dynamic flux of water soluble carbohydrates in wheat peduncle under terminal drought stress. Plant physiology and biochemistry, 151, 719-728. Zia, R., Nawaz, M.S., Siddique, M.J., Hakim, S. & Imran, A. (2021). Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological research, 242, 126626.