Weighted gene co-expression network analysis of regulatory modules by jasmonic acid in Arabidopsis

Document Type : Research Paper

Authors

1 Ph.D. Candidate Student, Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

2 Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

3 Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan,

4 Assistant Professor, Agricultural and Natural Resources Research Centre of Kermanshah, Kermansha, Iran

Abstract

Environmental conditions lead to biosynthesis of signaling molecules including phytohormones in plants which have important functions as primary messengers in signal transduction and regulating cell metabolism. Jasmonic acid hormone by controlling the transcription factors can play key roles in response to various stresses and developmental processes in plants. Despite numerous studies, plant responses to the hormone are not completely understood. Here, microarray data of Arabidopsis from GEO database was used for analysis of co-expression network. WGCNA (Weighted Gene Co-expression Network Analysis) analysis determines 25 gene groups (modules) that their expression profiles correlated highly significant with each other in response to jasmonic acid. Gene ontology was utilized to investigate each module for statistical significance. This analysis indicated that jasmonic acid controls many processes including photosynthesis, cell programmed death, and response to various stresses. In addition, many of transcription factors such as 11 genes of NAC family and 12 genes of bHLH family play roles in the regulation of jasmonic acid responses and adjust processes including response to biotic and abiotic stresses, flower development and response to light.

Keywords

Main Subjects


Andorf CM, Cannon EK, Portwood IIJL, Gardiner JM, Harper LC, Schaeffer ML, Braun BL, Campbell DA, Vinnakota AG, Sribalusu VV, Huerta M, Cho KT, Wimalanathan K, Richter JD, Mauch ED, Rao BS, Birkett SM, Sen TZ, Lawrence-Dill CJ (2015) MaizeGDB update: new tools, data and interface for the maize model organism database. Nucleic Acids Res. 44(D1): D1195-D1201.
Attaran E, Major IT, Cruz JA, Rosa BA, Koo AJ, Chen J, Kramer DM, He SY, Howe GA (2014) Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant physiol. 165(3): 1302-1314.
Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol. 177(2): 301-318.
Bergmann S, Ihmels J, Barkai N (2004) Similarities and differences in genome-wide expression data of six organisms. PLoS Biol. 2(1): 85-93.
Bu Q, Jiang H, Li C-B, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell res. 18(7): 756-767.
Cerrudo I, Keller MM, Cargnel MD, Demkura PV, de Wit M, Patitucci MS, Pierik R, Pieterse CM, Ballaré CL (2012) Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. Plant Physiol. 158(4): 2042-2052.
Chen HY, Hsieh EJ, Cheng MC, Chen CY, Hwang SY, Lin TP (2016) ORA47 (octadecanoid‐responsive AP2/ERF‐domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis‐element. New Phytol. 211(2): 599-613.
Chen YA, Wen YC, Chang WC (2012) AtPAN: an integrated system for reconstructing transcriptional regulatory networks in Arabidopsis thaliana. BMC Genomics. 13(1): 85.
Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell. 19(7): 2225-2245.
Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic acids res. doi: 10.1093/nar/gkq310.
Duek PD, Fankhauser C (2005) bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci. 10(2): 51-54.
Feng X-M, Zhao Q, Zhao L-L, Qiao Y, Xie X-B, Li H-F, Yao Y-X, You C-X, Hao Y-J (2012) The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC plant Biol. doi: 10.1186/1471-2229-12-22.
Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J-M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell. 23(2): 701-715.
Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J. cell biol. 168(1): 17-20.
Hopper DW, Ghan R, Schlauch KA, Cramer GR (2016) Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance. BMC Plant Biol. doi:10.1186/s12870-016-0804-6.
Hu P, Zhou W, Cheng Z, Fan M, Wang L, Xie D (2013) JAV1 controls jasmonate-regulated plant defense. Mol. cell. 50(4): 504-515.
Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the inducer of CBF expression–c-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell. 25(8): 2907-2924.
Jiang Y, Liang G, Yang S, Yu D (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid–and auxin-mediated signaling in jasmonic acid–induced leaf senescence. Plant Cell. 26(1): 230-245.
Khokon M, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid‒induced stomatal closure in Arabidopsis. Plant Cell Environ. 34.
Kobayashi Y, Sadhukhan A, Tazib T, Nakano Y, Kusunoki K, Kamara M, Chaffai R, Iuchi S, Sahoo L, Kobayashi M, Hoekenga OA, Koyama H (2016) Joint genetic and network analyses identify loci associated with root growth under NaCl stress in Arabidopsis thaliana. Plant Cell Environ. 39(4): 918-934.
Kosová K, Prášil IT, Vítámvás P, Dobrev P, Motyka V, Floková K, Novák O, Turečková V, Rolčik J, Pešek B (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J. plant physiol. 169(6): 567-576.
Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 9(1): 559.
Li C, Liu G, Xu C, Lee GI, Bauer P, Ling H-Q, Ganal MW, Howe GA (2003) The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell. 15(7): 1646-1661.
Li Q, Lei S, Du K, Li L, Pang X, Wang Z, Wei M, Fu S, Hu L, Xu L (2016) RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica. Sci. Rep. doi: 10.1038/srep36463.
Lozano-Durán R, García I, Huguet S, Balzergue S, Romero LC, Bejarano ER (2012) Geminivirus C2 protein represses genes involved in sulphur assimilation and this effect can be counteracted by jasmonate treatment. Eur. J. Plant Pathol. 134(1): 49-59.
Lyons R, Manners JM, Kazan K (2013) Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Rep. 32(6): 815-827.
Ma C, Wang Z, Zhang L, Sun M, Lin T (2014) Photosynthetic responses of wheat (Triticum aestivum L.) to combined effects of drought and exogenous methyl jasmonate. Photosynthetica. 52(3): 377-385.
Mandaokar A, Thines B, Shin B, Markus Lange B, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J. 46(6): 984-1008.
Miller G, Suzuki N, Ciftci‐Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33(4): 453-467.
Moon J, Zhu L, Shen H, Huq E (2008) PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proc. Natl. Acad. Sci. 105(27): 9433-9438.
Moschen S, Higgins J, Di Rienzo JA, Heinz RA, Paniego N, Fernandez P (2016) Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower. BMC Bioinformatics. doi:10.1186/s12859-016-1045-2.
Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell. 20(3): 768-785.
Nabity PD, Zavala JA, DeLucia EH (2012) Herbivore induction of jasmonic acid and chemical defences reduce photosynthesis in Nicotiana attenuata. J. Exp. Bot. 64(2):685-94.
Nakata M, Mitsuda N, Herde M, Koo AJ, Moreno JE, Suzuki K, Howe GA, Ohme-Takagi M (2013) A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell. 25(5): 1641-1656.
Nuruzzaman M, Sharoni AM, Kikuchi S (2015) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol. doi: 10.3389/fmicb.2013.00248.
Omranian N, Kleessen S, Tohge T, Klie S, Basler G, Mueller-Roeber B, Fernie AR, Nikoloski Z (2015) Differential metabolic and coexpression networks of plant metabolism. Trends Plant Sci. 20(5): 266-268.
Overmyer K, Brosché M, Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci. 8(7): 335-342.
Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 6: 69.
Petrov VD, Van Breusegem F (2012) Hydrogen peroxide-a central hub for information flow in plant cells. AoB plants. doi: 10.1093/aobpla/pls014.
Poonam S, Kaur H, Geetika S (2013) Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Millsp. seedlings under copper stress. AJPS. 4(4): 817.
Qi F, Li J, Duan L, Li Z (2005) Inductions of coronatine and MeJA to low-temperature resistance of wheat seedlings. Acta Bot. Boreali-Occidentalia Sinica. 26(9): 1776-1780.
Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J. 276(17): 4666-4681.
Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49: 317-343.
Schaefer RJ, Michno J-M, Myers CL (2016) Unraveling gene function in agricultural species using gene co-expression networks. Biochim. Biophys. Acta. 1860(1):53-63.
Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix‐loop‐helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J. 65(6): 907-921.
Serin EAR, Nijveen H, Hilhorst HWM, Ligterink W (2016) Learning from Co-expression Networks: Possibilities and Challenges. Front. Plant Sci. doi:10.3389/fpls.2016.00444.
Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature. 468(7322): 400-405.
Silva AT, Ribone PA, Chan RL, Ligterink W, Hilhorst HWM (2016) A predictive coexpression network identifies novel genes controlling the seed-to-seedling phase transition in Arabidopsis thaliana. Plant Physiol. 170(4): 2218-2231.
Soares AMdS, Souza TFd, Jacinto T, Machado OLT (2010) Effect of methyl jasmonate on antioxidative enzyme activities and on the contents of ROS and H2O2 in Ricinus communis leaves. Braz. J. Plant Physiol. 22(3): 151-158.
Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux J-P, Brown R, Kazan K (2003) NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol.  Plant Cell. 15(3): 760-770.
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP (2014) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic acids res. doi: 10.1093/nar/gku1003.
Takehisa H, Sato Y, Antonio B, Nagamura Y (2015) Coexpression network analysis of macronutrient deficiency response genes in rice. Rice doi:10.1186/s12284-015-0059-0.
Tantong S, Pringsulaka O, Weerawanich K, Meeprasert A, Rungrotmongkol T, Sarnthima R, Roytrakul S, Sirikantaramas S (2016) Two novel antimicrobial defensins from rice identified by gene coexpression network analyses. Peptides. 84: 7-16.
Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell. 14: S153-S164.
Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Körbes AP, Memelink J, Ritsema T (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell. 25(2):744-61.
Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann. Bot. 111(6):1021-1058.
Wierstra I, Kloppstech K (2000) Differential effects of methyl jasmonate on the expression of the early light-inducible proteins and other light-regulated genes in barley. Plant physiol. 124(2): 833-844.
Xu E, Brosché M (2014) Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC Plant Biol. doi:10.1186/1471-2229-14-155.
Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S (2005) A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light–mediated photomorphogenic growth. Plant Cell. 17(7): 1953-1966.
Yang T, Hao L, Yao S, Zhao Y, Lu W, Xiao K (2016) TabHLH1, a bHLH-type transcription factor gene in wheat, improves plant tolerance to Pi and N deprivation via regulation of nutrient transporter gene transcription and ROS homeostasis. Plant P Physiol. Biochem. 104: 99-113.
Yi X, Du Z, Su Z (2013) PlantGSEA: a gene set enrichment analysis toolkit for plant community. Nucleic Acids Res. 41(W1): W98-W103.
Yu Y, Liu Z, Wang L, Kim SG, Seo PJ, Qiao M, Wang N, Li S, Cao X, Park CM (2016) WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. Plant J. 85 (1):96-106.
Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1128.
Zhang JC, Zheng HY, Li YW, Li HJ, Liu X, Qin HJ, Dong LL, Wang DW (2016) Coexpression network analysis of the genes regulated by two types of resistance responses to powdery mildew in wheat. Sci. Rep. doi: 10.1038/srep23805.
Zhang L, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant cell physiol. 49(7): 1092-1111.
Zhang M, Su L, Xiao Z, Liu X, Liu X (2016) Methyl jasmonate induces apoptosis and pro-apoptotic autophagy via the ROS pathway in human non-small cell lung cancer. Am. J. Cancer Res. 6(2): 187.