Functional Analysis of AtPHT1;1 promoter in rapeseed (Brassica napus L.) heterologous system

Document Type : Research Paper

Authors

1 Ph.D. Student, National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, Tehran, I.R. Iran.

2 Assistant Professor, Department of Genetic Engineering and Biosafety, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran.

3 Ph.D, Leibniz Institute of Plant Genetics and Crop Plant Research, IPK Gatersleben, Germany.

4 Professor, National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, Tehran, I.R. Iran.

Abstract

Breeding crops with a higher ability in using soil minerals is one of the biotechnology researchers’ goals. Genetic engineering methods provide considerable advances in crop breeding by transferring and creating desired traits for further production under normal or stress conditions. In these procedures, Design of efficient gene constructs is of particular importance and requires promoters with proper function to specifically express the gene of interest in the target tissue and at the appropriate time to develop desired traits such as tolerance to biotic and abiotic stresses or other aims. Specific expression of phosphate-transporter genes in the roots and their induced levels in phosphate deficiency shows the potential of this gene-family promoters utilization in transgenic plants, particularly for the use in phosphate absorption from soil. Bioinformatics analysis showed that the 1826-bp promoter fragment of AtPHT1;1 gene carries several motifs leading to root-specific expression in Arabidopsis thaliana. The expression of a secretory acid phosphatase gene, AtPAP17, as a reporter gene in rapeseed transgenic plants indicated that the AtPHT1;1 promoter retains its root-specific criteria in rapeseed such that it could be used as a regulatory region for the specific expression of desired genes in transgenic rapeseed plant roots.

Keywords

Main Subjects


Brandt, R., Cabedo, M., Xie, Y., & Wenkel, S. (2014). Homeodomain leucine‐zipper proteins and their role in synchronizing growth and development with the environment. Journal of Integrative Plant Biology, 56(6), 518-26. Bustos, R., Castrillo, G., Linhares, F., Puga, M. I., Rubio, V., Pérez-Pérez, J., Solano, R., Leyva, A., & Paz-Ares, J. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS genetics, 6(9): e1001102. Cui, W., Chi, J., Feng, Y., Geng, L., & Liu, R. (2020). Construction and function of a root-specific promoter SRSP. Chinese Journal of Biotechnology, 36(4), 700-706. de Melo, B. P., de Moura, S. M., Morgante, C. V., Pinheiro, D. H., Alves, N. S. F., Rodrigues-Silva, P. L., Lourenço-Tessutti, I. T., Andrade, R. V., Fragoso, R. R., & Grossi-de-Sa, M. F. (2021). Regulated promoters applied to plant engineering: an insight over promising soybean promoters under biotic stress and their cis-elements. Biotechnology Research and Innovation Journal, 5(1), 0-0. Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A rapid method for DNA extraction from plant tissue. Plant Molecular Biology Reporter, 1, 19-21. Devaiah, B. N., Nagarajan, V. K., & Raghothama, K. G. (2007). Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant physiology ,145(1), 147-159. Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999.) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic acids research, 27(1), 297-300. Huang, L., Jiang, Q., Wu, J., An, L., Zhou, Z., Wong, C., Wu, M., Yu, H., & Gan, Y. (2020.) Zinc finger protein 5 (ZFP5) associates with ethylene signaling to regulate the phosphate and potassium deficiency-induced root hair development in Arabidopsis. Plant molecular biology, 102(1-2), 143-158. Jeong, H. J., & Jung, K. H. (2015). Rice tissue-specific promoters and condition-dependent promoters for effective translational application. Journal of integrative plant biology, 57(11), 913-924. Keb-llanes, M., Gonzalez, G., ChiManzanero, B., & Infante, D. (2002). A Rapid and Simple Method for Small Scale DNA Extraction in Agavaceae and Other Tropical Plants. Plant Molecular Biology Reporter, 20, 299a-299e. Kim, D. W., Lee, S. H., Choi, S. B., Won, S. K., Heo, Y. K., Cho, M., Park, Y. I., & Cho, H. T. (2006). Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. The Plant cell, 18(11), 2958-2970. Koyama, T., Ono, T., Shimizu, M., Jinbo, T., Mizuno, R., Tomita, K., Mitsukawa, N., Kawazu, T., Kimura, T., Ohmiya, K., & Sakka, K. (2005). Promoter of Arabidopsis thaliana phosphate transporter gene drives root-specific expression of transgene in rice. Journal of bioscience and bioengineering, 99(1), 38-42. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P., & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic acids research, 30(1), 325-327. Liao, Y. Y., Li, J. L., Pan, R. L., & Chiou, T. J., (2019). Structure-Function Analysis Reveals Amino Acid Residues of Arabidopsis Phosphate Transporter AtPHT1;1 Crucial for Its Activity. Frontiers in plant science, 10, 1158. Liu, Y., Khan, A. R., & Gan, Y. (2022). C2H2 Zinc Finger Proteins Response to Abiotic Stress in Plants. International journal of molecular sciences, 23(5), 2730. López-Arredondo, D. L., & Herrera-Estrella, L. (2013). A novel dominant selectable system for the selection of transgenic plants under in vitro and greenhouse conditions based on phosphite metabolism. Plant biotechnology journal, 11(4), 516-525. Mohan, C., Jayanarayanan, A. N., & Narayanan, S. (2017). Construction of a novel synthetic root-specific promoter and its characterization in transgenic tobacco plants. 3 Biotech, 7(4), 234. Mudge, S. R., Rae, A. L., Diatloff, E., & Smith, F. W. (2002). Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. The Plant journal: for cell and molecular biology, 31(3), 341-353. Müller, R., Morant, M., Jarmer, H., Nilsson, L., & Nielsen, T. H. (2007). Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant physiology, 143(1), 156-171. Nussaume, L., Kanno, S., Javot, H., Marin, E., Pochon, N., Ayadi, A., Nakanishi, T. M., & Thibaud, M. C. (2011). Phosphate Import in Plants: Focus on the PHT1 Transporters. Frontiers in plant science, 2, 1-12. O’Gallagher, B., Ghahremani, M., Stigter, K., Walker, E. J., Pyc, M., Liu, A. Y., MacIntosh, G. C., Mullen, R. T., & Plaxton, W. C. (2021). Biochemical and molecular characterization of AtPAP17: a dual-localized, low molecular weight Arabidopsis purple acid phosphatase upregulated during phosphate deprivation, senescence, and oxidative stress. Journal of Experimental Botany, 73(1). 382-399. Parra, G., Bradnam, K., Rose, A. B., & Korf, I. (2011). Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic acids research, 39(13), 5328-5337. Peykari, N., & Zamani, K. (2019). Cloning and characterization of a constitutive promoter of polyubiquitin gene from Cicer ariethinum. Crop Biotechnology, 9(25), 35-45. (in Persian) Porto, M. S., Pinheiro, M. P., Batista, V. G., dos Santos, R. C., Filho, P., & de Lima, L. M. (2014). Plant promoters: an approach of structure and function. Molecular biotechnology, 56(1), 38-49. Reyes, J. C., Muro-Pastor, M. I., & Florencio, F. J. (2004). The GATA family of transcription factors in Arabidopsis and rice. Plant physiology, 134(4), 1718-1732. Rose, A. B., Carter, A., Korf, I., & Kojima, N. (2016). Intron sequences that stimulate gene expression in Arabidopsis. Plant molecular biology, 92(3), 337-346. Rubio, V., Linhares, F., Solano, R., Martín, A. C., Iglesias, J., Leyva, A., & Paz-Ares, J. (2001). A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & development, 15(16), 2122-2133. Scranton, M. A., Ostrand, J. T., Georgianna, D. R., Lofgren, S. M., Li, D., Ellis, R. C., Carruthers, D. N., Dräger, A., Masica, D. L., & Mayfield, S. P. (2016). Synthetic promoters capable of driving robust nuclear gene expression in the green alga Chlamydomonas reinhardtii. Algal research, 15, 135-142. Sharpley, A. N., Withers, P. J. A., Abdalla, C. W., & Dodd, A. R. (2005). Strategies for the sustainable management of phosphorus. In: JT. Sims, AN. Sharpley, eds. Phosphorus, agriculture and the environment. American Society for Agronomy, Madison,USA,pp.1069-1101. Sun, L., Song, L., Zhang, Y., Zheng, Z., & Liu, D. (2016). Arabidopsis PHL2 and PHR1 Act Redundantly as the Key Components of the Central Regulatory System Controlling Transcriptional Responses to Phosphate Starvation. Plant physiology, 170(1), 499-514. Wang, L., & Liu, D. (2017) Analyses of root-secreted acid phosphatase activity in Arabidopsis. Bio-protocol, 7(7), 1-11. Wang, X., Wang, H. F., Chen, Y., Sun, M. M., Wang, Y., & Chen, Y. F. (2020). The Transcription Factor NIGT1.2 Modulates Both Phosphate Uptake and Nitrate Influx during Phosphate Starvation in Arabidopsis and Maize. The Plant cell, 32(11), 3519-3534. Wang, Z., Zheng, Z., Song, L., & Liu, D. (2018). Functional Characterization of Arabidopsis PHL4 in Plant Response to Phosphate Starvation. Frontiers in plant science, 9, 1432.1-19. Wobbe, C. R., & Struhl, K. (1990). Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro. Molecular and cellular biology, 10(8), 3859-3867. Zare, B., Malboobi, M. A., Jahromi, M. S., & Norouzi, P. (2019). inventors; National Institute of Genetic Engineering, assignee. Binary vectors with minimized biosafety concerns and high transformation rates by engineered plant-derived transfer-DNA. United States patent US 10,370,671. 2019 Aug 6.