An investigation of the protein phosphatase 2C (AlPP2C) gene family in halophile plant, Aeluropus littoralis

Document Type : Research Paper

Authors

1 1. Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran, P. O. Box 578

2 2. RG Abiotic Stress Genomics/ RG Heterosis, Department Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK). Germany

3 Genetic and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran, P. O. Box 578

4 RG Abiotic Stress Genomics/ RG Heterosis, Department Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

Abstract

From prokaryotes to higher eukaryotes, protein phosphatase 2Cs (PP2Cs) play a critical role in the stress response. For the purpose of identifying the AlPP2C gene and examining its expression, Aeluropus littoralis, a salt-secreting halophytic grass belonging to the Poaceae family, was genome-wildly analyzed. Based on the unique structure of the PP2C domain, 34 AlPP2C genes were discovered and classified into ten evolutionary branches based on homology with Arabidopsis thaliana. According to exon-intron structural analyses, they possessed a wide range of exon counts. AlPP2Cs shared similar motif organization in the same evolutionary branches based on motif distribution. The motifs ABRE, MBS, DRE, STRE, and LTR, which are related with stress, were discovered in the promoter region of the AlPP2C. AlPP2Cs displayed varied expression patterns in leaf and root tissues in response to salt stress and recovery conditions, according to transcriptome analyses. The AlPP2C4 gene is only expressed in the root tissues. These results expand our understanding of the PP2C gene family and provide valuable information for future research on PP2Cs molecular function and biological processes studies.

Keywords

Main Subjects


Arab, M., Najafi Zarrini, H., Nematzadeh, G., & Hashemi-petroudi, S. H. (2021). Bioinformatics analysis of calcium-dependent protein kinase (CPK) in Aeluropus littoralis L. Crop Biotechnology, 10(33), 1-19. Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., ... Noble, W. S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 37, 202-208. Barhoumi, Z., Djebali, W., Chaïbi, W., Abdelly, C., & Smaoui, A. (2007a). Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. Journal of plant research, 120(4), 529-537. Barhoumi, Z., Djebali, W., Smaoui, A., Chaïbi, W., & Abdelly, C. (2007b). Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. Journal of plant physiology, 164(7), 842-850. Bork, P., Brown, N. P., Hegyi, H., & Schultz, J. (1996). The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues. Protein Science, 5(7), 1421-1425. Cao, J., Jiang, M., Li, P., & Chu, Z. (2016). Genome-wide identification and evolutionary analyses of the PP2C gene family with their expression profiling in response to multiple stresses in Brachypodium distachyon. BMC genomics, 17(1), 1-17. Chow, C. N., Zheng, H. Q., Wu, N. Y., Chien, C. H., Huang, H. D., Lee, T. Y., ... Chang, W. C. (2016). PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Research, 44(D1), D1154-D1160. Creelman, R. A., Tierney, M. L., & Mullet, J. E. (1992). Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proceedings of the National Academy of Sciences, 89(11), 4938-4941. Fassbinder-Orth, C. A. (2014). Methods for quantifying gene expression in ecoimmunology: from qPCR to RNA-Seq. Integrative and Comparative Biology, 54(3), 396-406. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783-791. Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J. Mitchell, A. L., ... Sangrador-Vegas, A. (2015). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 44, 279-285. Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server The proteomics protocols handbook (pp. 571-607): Springer. González-García, M. P., Rodríguez, D., Nicolás, C., Rodríguez, P. L., Nicolás, G., & Lorenzo, O. (2003). Negative regulation of abscisic acid signaling by the Fagus sylvatica FsPP2C1 plays a role in seed dormancy regulation and promotion of seed germination. Plant physiology, 133(1), 135-144. Haider, M. S., Zhang, C., Kurjogi, M. M., Pervaiz, T., Zheng, T., Zhang, C., ... Fang, J. (2017). Insights into grapevine defense response against drought as revealed by biochemical, physiological and RNA-Seq analysis. Scientific reports, 7(1), 1-15. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98. Hashemi-petroudi, S., & Mohammadi, S. (2021). Identification, classification and expression analysis of DREB transcription factor gene family in Aeluropus littoralis under salinity stress. Journal of Plant Research (Iranian Journal of Biology), 34(1), 224-235. Hashemi-Petroudi, S. H., Arab, M., Dolatabadi, B., Kuo, Y.-T., Baez, M. A., Himmelbach, A., ... Mälzer, M. (2022). Initial Description of the Genome of Aeluropus littoralis, a Halophile Grass. Frontiers in plant science, 13, 906462. Hashemi-petroudi, S. H., & Mohammadi, S. (2020). Identification of the ERF gene family in Aeluropus littoralis halophyte plant and analysis of their expression pattern in response to salt stress. Crop Biotechnology, 9(29), 53-66. doi:10.30473/cb.2020.49234.1787 Horton, P., Park, K.-J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C., & Nakai, K. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Research, 35, 585-587. Hu, B., Jin, J., Guo, A.-Y., Zhang, H., Luo, J., & Gao, G. (2014). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics,31(8),1296-1297. Hu, B., Jin, J., Guo, A.-Y., Zhang, H., Luo, J., & Gao, G. (2015). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics,31(8),1296-1297. Hu, X., Liu, L., Xiao, B., Li, D., Xing, X., Kong, X., & Li, D. (2010). Enhanced tolerance to low temperature in tobacco by over-expression of a new maize protein phosphatase 2C, ZmPP2C2. Journal of plant physiology, 167(15), 1307-1315. Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., ... Nuka, G. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics, 30(9), 1236-1240. Jung, C., Nguyen, N. H., & Cheong, J.-J. (2020). Transcriptional regulation of protein phosphatase 2C genes to modulate abscisic acid signaling. International journal of molecular sciences, 21(24), 9517. Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H. McCombie, W. R., Ouyang, S., ... Zhou, S. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, 6(1), 4. Khan, N., Ke, H., Hu, C.-M., Naseri, E., Haider, M. S., Ayaz, A., ... Hou, X. (2019). Genome-wide identification, evolution, and transcriptional profiling of PP2C gene family in Brassica rapa. BioMed research international, 2019. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, 33(7),1870-1874. Lamesch, P., Berardini, T. Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., ... Garcia-Hernandez, M. (2012). The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res, 40(D1), D1202-D1210. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., ... Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325-327. Letunic, I., Doerks, T., & Bork, P. (2014). SMART: recent updates, new developments and status in 2015. Nucleic Acids Research, 43(D1), D257-D260. Li, J., Jia, H., Zhang, J., Sun, J., Zhang, Y., Lu, M., ... Hu, J. (2018). Genome-wide characterization of protein phosphatase 2C genes in Populus euphratica and their expression profiling under multiple abiotic stresses. Tree Genetics & Genomes, 14(6), 80. Liang, B., Sun, Y., Wang, J., Zheng, Y., Zhang, W., Xu, Y., ... Leng, P. (2020). Tomato Protein Phosphatase 2C (SlPP2C3) negatively regulates fruit ripening onset and fruit gloss. bioRxiv. Lu, F., Wang, K., Yan, L., Peng, Y., Qu, J., Wu, J., ... Yu, H. (2020). Isolation and characterization of maize ZmPP2C26 gene promoter in drought-response. Physiology and Molecular Biology of Plants, 26(11), 2189-2197. Majda, M., & Robert, S. (2018). The role of auxin in cell wall expansion. International journal of molecular sciences, 19(4), 951. Mao, D., & Chen, C. (2012). Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. PloS one, 7(10), e47275. Mohammadi, S., Nematzadeh, G., Najafi Zarini, H., & Hashemi-petroudi, S. H. (2021). Identification and evaluation of conserved miR164-targeted Aeluropus littoralis NAC genes in response to abiotic stress. Crop Biotechnology, 10(34), 27-41. doi:10.30473/cb.2021.60319.1851 Mohammadi, S., Nematzadeh, G., Najafi Zarrini, H., & Hashemi-petroudi, S. (2022). Abiotic stress-related Cis-elements analysis in promoters of Aeluropus littoralis NAC genes. Journal of Plant Research (Iranian Journal of Biology), 35(3), 632-648. Qiu, J., Ni, L., Xia, X., Chen, S., Zhang, Y., Lang, M., ... Li, J. (2022). Genome-Wide Analysis of the Protein Phosphatase 2C Genes in Tomato. Genes, 13(4), 604. Saez, A., Apostolova, N., Gonzalez‐Guzman, M., Gonzalez‐Garcia, M. P., Nicolas, C., Lorenzo, O., & Rodriguez, P. L. (2004). Gain‐of‐function and loss‐of‐function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. The Plant Journal, 37(3), 354-369. Scherf, U., Ross, D. T., Waltham, M., Smith, L. H., Lee, J. K., Tanabe, L., ... Andrews, D. T. (2000). A gene expression database for the molecular pharmacology of cancer. Nature genetics, 24(3), 236. Schweighofer, A., Hirt, H., & Meskiene, I. (2004). Plant PP2C phosphatases: emerging functions in stress signaling. Trends in plant science, 9(5), 236-243. Shazadee, H., Khan, N., Wang, J., Wang, C., Zeng, J., Huang, Z., & Wang, X. (2019). Identification and Expression Profiling of Protein Phosphatases (PP2C) Gene Family in Gossypium hirsutum L. International journal of molecular sciences, 20(6), 1395. Shinozaki, K., & Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current opinion in plant biology, 3(3), 217-223. Singh, A., Giri, J., Kapoor, S., Tyagi, A. K., & Pandey, G. K. (2010). Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC genomics,11(1),435. Singh, A., Jha, S. K., Bagri, J., & Pandey, G. K. (2015). ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis. PloS one, 10(4), e0125168. Singh, A., Pandey, A., Srivastava, A. K., Tran, L.-S. P., & Pandey, G. K. (2016). Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Critical Reviews in Biotechnology, 36(6), 1023-1035. Takasaki, H., Maruyama, K., Kidokoro, S., Ito, Y., Fujita, Y., Shinozaki, K., ... Nakashima, K. (2010). The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molecular Genetics and Genomics, 284(3), 173-183. Thompson, J. D., Gibson, T. J., & Higgins, D.G. (2003). Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics, 1, 2-3. Van den Broeck, L., Dubois, M., Vermeersch, M., Storme, V., Matsui, M., & Inzé, D. (2017). From network to phenotype: the dynamic wiring of an Arabidopsis transcriptional network induced by osmotic stress. Molecular systems biology, 13(12), 961. VanGuilder, H. D., Vrana, K. E., & Freeman, W. M. (2008). Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques, 44(5), 619-626. Wang, Y.F., Liao, Y.Q., Wang, Y.P., Yang, J.W., Zhang, N., & SI, H.J. (2020). Genome-wide identification and expression analysis of StPP2C gene family in response to multiple stresses in potato (Solanum tuberosum L.). Journal of Integrative Agriculture, 19(6), 1609-1624. Wei, K., & Pan, S. (2014). Maize protein phosphatase gene family: identification and molecular characterization. BMC genomics, 15(1), 1-20. Workbench, C. G. (2019). Version 6.5. 1. CLC bio A/S science park aarhus finlandsgade, 10-12. Xue, T., Wang, D., Zhang, S., Ehlting, J., Ni, F., Jakab, S., ... Zhong, Y. (2008). Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC genomics, 9(1), 1-21. You, J., Zong, W., Hu, H., Li, X., Xiao, J., & Xiong, L. (2014). A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice. Plant physiology, 166(4), 2100-2114. Yu, T. F., Zhao, W. Y., Fu, J. D., Liu, Y. W., Chen, M., Zhou, Y. B., ... Xi, Y. J. (2018). Genome-wide analysis of CDPK family in foxtail millet and determination of SiCDPK24 functions in drought stress. Frontiers in plant science, 9, 651. Yu, X., Han, J., Wang, E., Xiao, J., Hu, R., Yang, G., & He, G. (2019). Genome-wide identification and homoeologous expression analysis of PP2C genes in wheat (Triticum aestivum L.). Frontiers in genetics, 10, 561. Zhang, F., Wei, Q., Shi, J., Jin, X., He, Y., Zhang, Y., ... Yang, G. (2017). Brachypodium distachyon BdPP2CA6 interacts with BdPYLs and BdSnRK2 and positively regulates salt tolerance in transgenic Arabidopsis. Frontiers in plant science, 8, 264. Zhang, P., Zhang, X., Yu, H., Pan, L., Fu, F., & Li, W. (2018). Functions of two alternative spliced variants of protein phosphatase type 2C gene ZmPP2C26 of maize. Journal of Northwest A & F University-Natural Science Edition, 46(7), 23-72. Zhang, S., Xia, X., Shen, J., Zhou, Y., & Sun, Z. (2008). DBMLoc: a Database of proteins with multiple subcellular localizations. BMC bioinformatics, 9(1), 127.