با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسنده

پژوهشکده بیوتکنولوژی جانوری، پژوهشگاه بیوتکنولوژی کشاورزی ایران (ABRII)، سازمان تحقیقات، آموزش و ترویج کشاورزی (AREEO)، رشت، ایران

چکیده

برنج (Oryza sativa) به دلیل سازگاری محدود با شرایط کم آبی، به تنش خشکی بسیار حساس است. تنش خشکی پاسخ‌های مورفولوژیکی، فیزیولوژیکی، بیوشیمیایی و مولکولی را در این گیاه تغییر می‌دهد. در این تحقیق تأثیر تنش خشکی در مراحل رویشی و زایشی بر صفات مورفولوژیک و بیان ژن‌های کدکننده فاکتورهای رونویسی DREB2A و ZFP252 در لاین برنج TH1 (حساس به خشکی) و رقم ندا (متحمل به خشکی) مورد بررسی قرار گرفت. تنش خشکی از طریق توقف آبیاری در مراحل پنجه‌زنی و خوشه‌دهی اعمال شد. نتایج بررسی صفات مورفولوژیکی نشان داد تعداد پنجه و تعداد خوشه به عنوان شاخصی برای تولید در رقم ندا به طور معنی‌داری بیشتر از لاین TH1 بود. Real Time PCR نشان داد در رقم ندا تنش خشکی در مرحله رویشی باعث افزایش بیان ژن ZFP252 (به نسبت 217/3 برابر) شد. این امر نشان دهنده‌ی اهمیت این ژن پاسخ‌دهنده به تنش خشکی در این ژنوتیپ در این مرحله‌ی رشدی می‌باشد. بررسی تغییرات میزان بیان ژن‌های DREB2A و ZFP252 در لاین TH1 حاکی از افزایش معنی‌دار بیان این دو ژن در نتیجه‌ی وقوع تنش خشکی در مرحله‌ی رویشی بود. آنالیز بیان ژن‌های کد کننده‌ی فاکتورهای رونویسی در این مطالعه بیانگر آن بود که گیاهان متحمل و حساس ممکن است از تنظیمات ژنتیکی و مکانیسم‌های متفاوتی در مواجهه با شرایط تنش استفاده کنند. رمزگشایی از این مکانیسم‌های مولکولی به درک بهتر تحمل به تنش و انتخاب استراتژی‌هایی برای بهبود بهره‌وری محصول در مواجهه با تغییرات آب و هوایی کمک می‌کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Drought stress effect on agricultural traits and expression of DREB2A and ZFP252 genes in rice

نویسنده [English]

  • Alireza Tarang

Agricultural Biotechnology Research Institute of Iran (ABRII), North Region Branch, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

چکیده [English]

Rice (Oryza sativa) is very sensitive to drought stress because of its limited adaptation to water-deficit conditions. Drought stress alters morphological, physiological, biochemical, and molecular responses in plant. In this study, the effects of drought stress on morphological traits and expression of transcription factor genes DREB2A and ZFP252 at vegetative and reproductive stages were investigated in TH1 line (drought sensitive) and Neda (drought tolerant). Drought stress was induced by stopping irrigation at tillering and heading stages. Investigation of morphological traits showed tiller and panicle numbers as production indices were significantly higher in Neda cultivar than TH1 line. Real Time PCR Neda genotype showed a significant increase (3.217 expression ratio) in expression of transcript level of ZFP252 at vegetative stage under drought stress. This indicates the importance of this drought stress responsive gene in acquisition of drought tolerance in this genotype at this stage. Investigation of expression level changes in TH1 line showed significant increase in DREB2A and ZFP252 genes expression under drought stress at the vegetative stage. Gene expression analysis in this study suggesting that tolerant and sensitive plants may be using genetic regulations and different mechanisms to be exposed to stress conditions. Deciphering of these molecular mechanisms will aid to better understand stress tolerance and to select strategies for improving crop productivity facing climate change.

کلیدواژه‌ها [English]

  • Drought
  • Gene expression
  • Rice
  • Transcription factors
Abdullah, T., Pawar, D. D., Kale, K. D., Dingre, S. K. (2015). Water and nutrient use efficiencies of wheat (Triticum aestivum L.) under drip fertigation. Agriculture for Sustainable Development, 3(1): 52-56. Agarwal, P., Arora, R., Ray, S., Singh, A. K., Singh, V. P., Takatsuji, H., Kapoor, S. & Tyagi, A. K. (2007). Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Molecular Biology, 65: 467-485. Akbarpour, M., Khavari-Nejada, R. A., Moumeni, A. & Najafic, F. (2016). Molecular and physiological performance in response to drought stress in Iranian rice cultivars. Russian Journal of Plant Physiology, 63(1): 158-165. Ashfaq, M., Haider, M. S., Khan, A. S. & Allah, S. U. (2014). Breeding potential of the basmati rice germplasm under water stress condition. African Journal of Biotechnology, 11: 6647-6657. Chrisnawati, L., Ernawiati, E., Yulianty. & Hariri, M. R. (2022). Polymorphism analysis of drought tolerance gene OsDREB2A in Indonesian local rice from Lampung, Indonesia. Biodiversitas Journal of Biological Diversity, 23: 12. Ciftci-Yilmaz, S. & Mittler, R. (2008). The zinc finger network of plants. Cellular and Molecular Life Science, 65: 1150-1160. Cui, M., Wenjiao, Zh., Zhang, Q., Xu, Zh., Zhu, Zh., Duan, F. & Wu, R. (2011). Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiology and Biochemistry, 49: 1384-1391. Dubouzet, G. J., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G., Miura, S., Seki, M., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. The Plant Journal, 33: 751-763. Farooq, M., Wahid, A., Lee, D. J., Ito, O. & Siddique, K. H. M. (2009). Advances in drought resistance of rice. Critical Reviews in Plant Science, 28:199-217. Fukao, T. & Xiong, L. Z. (2013). Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex?. Current Opinion in Plant Biology, 16: 196-204. Hadiarto, T. and Tran, L. S. (2011). Progress studies of drought-responsive genes in rice. Plant Cell Reports, 30: 297-310. Hansen, J. M., Go, Y. M. & Jones, D. P. (2006). Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annual Review of Pharmacology and Toxicology, 46: 215–234. Hassan, M. A., Dahu, N., Hongning, T., Qian, Z., Yueming, Y., Yiru, L. & Shimei W. (2023) Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding. Frontiers in Plant Science, 14: 1215371. Herawati, R., Alnopri, A., Masdar, M., Simarmata, S., Sipriyadi, S. & Sutrawati, M. (2021). Identification of drought tolerant markers, DREB2A and BADH2genes, and yield potential from single-crossing varieties of rice in Bengkulu, Indonesia. Biodiversitas, 22(2): 785-793. Huang, J., Sun, S., Xu, D., Lan, H., Sun, H., Wang, Z., Bao, Y., Wang, J., Tang, H. & Zhang, H. (2012). A TFIIIAtype zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). Plant Molecular Biology, 80: 337-350. Huang, X. Y., Chao, D. Y., Gao, J. P., Zhu, M. Z., Shi, M. & Lin, H. X. (2009). A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes and Development, 23: 1805-1817. Jaleel, J. A., Manivannan, P., Wahid, A., Farooq, M., Jasim al juburi, H., Somasundaram, R. & Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. Journal of Agriculturall Biology, 11: 100-105. Ji, K., Wang, Y, Sun, W., Lou, Q., Mei, H., Shen, Sh. & Chen, H. (2012). Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Journal of Plant Physiology, 169: 336-344. Joshi, R., Karan, R., Singla-Pareek, S. L. & Pareek, A. (2016). Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress. Plant Cell Reports, 35: 27–41. Kadam, N., Tamilselvan, A., Lawas, L. M. F., Quinones, C., Bahuguna, R. N., Thomson, M. J., Dingkuhn, M., Muthurajan, R., Struik, P. C., Yin, X. & Jagadish, S. V. (2017). Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit. Plant physiology, 174: 2302-2315. Lafitte, R., Blum A. & Altin, G. (2003). Using secondary traits to help identify drought tolerant genotypes. In: Fischer, K. S., Lafitte, R., Fukai, S., Altin, G. and Hardy, H. (Eds.). Breeding rice for drought-prone environment. International Rice Research Institute, Manila, Philippines. pp: 37-48. Li, J., Zhang, M., Yang, L., Mao, X., Li, J., Li, L., Wang, J., Liu, H., Zheng, H., Li, Z., Zhao, H., Li, X., Lei, L., Sun, J. & Zou, D. (2021). OsADR3 increases drought stress tolerance by inducing antioxidant defense mechanisms and regulating OsGPX1 in rice (Oryza sativa L.). The crop Journal, 9: 1003-1017. Liu, C. M., Kachur, S., Dwan, M. G., Abraham, A. G., Aziz, M., Hsueh, P., Huang, Y., Busch, J. D., Lamit, L. J., Gehring, C. A., Keim, P. & Price, L. B. (2012). FungiQuant: A broad-coverage fungal quantitative real-time PCR assay. BMC Microbiology, 12: 255-265. Mizoi, J., Shinozaki, K. and Shinozaki, K. Y. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica Biophysica Acta, 1819: 86-96. Mollazadeh, A., Tarang, A., Zare, N., Pourebrahim, M., Seighalani, R. & Ghasemi M. (2016). Expression analysis of five critical transcription factors (TFs) OsbHLH148, OsbZIP72, OsMYB2, OsNAC6 and TRAB1 in response to drought stress in contrasting Iranian rice genotyppes. Plant Omics Journall, 9(5): 327-333. Mollazadeh, A., Zare, N., Tarang, A., Asghari, R. & Seighalani, R. (2014). The study of expression of transcription factors in response to drought stress in rice. M.Sc. Dissertation. University of Mohaghegh Ardabili. Iran. Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., Comertpay, G. & Yildiz, M. (2018). DNA molecular markers in plant breeding:Current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment, 32: 261-285. Navidshad, B., Salekdeh, H., Royan, M. & Malecky, M. (2015). Effects of feed restriction and dietary fat type on mRNA expression of liver fatty acid-binding protein (L-FABP) in broilers. Iranian Journal of Veterinary Medicine, 9(4): 279-286. (in Persian). Panda, D., Mishra, S. S. and Behera P. K. (2021). Drought tolerance in rice: focus on recent mechanisms and approaches. Rice Science, 28 (2): 119-132. Pfaffl, M. W., Horgan, G. W. & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Oxford University Press 30: 1-10. Safaei Chaeikar, S., Rabiei, B., Samizadeh, H. & Esfahani, M. (2008). Evaluation of tolerance to terminal drought stress in rice (Oryza sativa L.) genotypes. Iranian Journal of Crop Science, 9: 315-331. (in Persian). Sandhya, A., Talakayala, A., Ravula, M., Mahankali, V., & Ankanagari, S. (2021). Drought tolerance enhancement with co-overexpression of DREB2A and APX in indica rice (Oryza sativa L.). American Journal of Plant Sciences, 12(2): 1-25. Singh, D. & Laxmi, A. (2015). Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science, 6:895. Sokoto, M. B. & Muhammad, A. (2014). Response of rice varieties to water stress in Sokoto, Sudan Savannah, Nigeria. Journal of Biosciences and Medicines, 2: 68-74. Sun, S. J., Guo, S. Q., Yang, X., Bao, Y. M., Tang, H. J., Sun, H., Huang, J. & Zhang, H. (2010). Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. Journal of Experimental Botany, 61: 2807-2818. Upadhyaya, H. & Panda, S. K. (2019). Drought stress responses and its management in rice. In book: Advances in Rice Research for Abiotic Stress Tolerance. Hasanuzzaman, M., Fujita, M. & Biswas, J. K. (Eds.). Woodhead publishing. 177-200. Wadhwa, R., Kumari, N. & Sharma, V. (2010). Varying light regimes in naturally growing Jatropha curcus: pigment, proline and photosynthetic performance. Journal of Stress Physiology and Biochemistry, 6: 67-80. Wang, J., Li, Q., Mao, X., Li, A. & Jing, R. (2016). Wheat transcription factor TaAREB3 participates in drought and freezing tolerances in Arabidopsis. International Journal of Biological Science, 12: 257-269. Xu, D. Q., Huang, J., Guo, S. Q., Yang, X., Bao, Y. M., Tang, H.J. & Zhang, H. (2008). Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Letters, 582: 1037-1043. Yamaguchi, T. & Blumwald, E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends in Plant Science, 10: 615-620. Zain, N. A. M., Ismail, M. R., Mahmood, M., Puteh, A. & Ibrahim, M. H. (2014). Alleviation of water stress effects on MR220 rice by application of periodical water stress and potassium fertilization. Molecules, 19: 1795-1819. Zhang, H., Liu, Y., Wen, F., Yao, D., Wang, L., Guo, J., Ni, L., Zhang, A., Tan, M. & Jiang, M. (2014). A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. Journal of Experimental Botany, 65: 5795-5809. Zhang, X., Zhang, B., Li, M. J., Yin, X. M., Huang, L. F., Cui, Y. C., Wang, M. L. & Xia, X. (2016). OsMSR15 encoding a rice C2H2-type zinc finger protein confers enhanced drought tolerance in transgenic Arabidopsis. Journal of Plant Biology, 59: 271-281. Zhao, K., Tung, C. W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., Norton, G. J., Islam, M. R., Reynolds, A., Mezey, J., Mcclung, A. M., Bustamante, C. D. & Mccouch S. R. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communication, 2: 467. Zhu, R., Wu, F., Zhou, S., Hu, T., Huang, J. & Gao Y. (2020). Cumulative effects of drought–flood abrupt alternation on the photosynthetic characteristics of rice. Environmental Experimental Botany, 169: 1–14.