اعتبار سنجی و تجزیه ارتباطی نشانگرهای ریزماهواره مرتبط با تحمل به تنش خشکی و شوری در برنج‌های هوازی و ایرانی تحت تنش اسمزی

نوع مقاله: علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد اصلاح‌نباتات گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه گیلان، رشت، ایران

2 استادیار اصلاح نباتات گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه گیلان، رشت، ایران

چکیده

پژوهش حاضر در راستای اعتبارسنجی نشانگرهای ریز‌ماهواره مرتبط با تحمل به تنش خشکی و شوری در برنج، در جمعیت طبیعی شامل برنج-های هوازی، ارقام خارجی و ایرانی انجام شد. مواد گیاهی در شرایط نرمال و همچنین دو سطح از تنش اسمزی ( 8- و 16- بار حاصل از مانیتول) با استفاده از آزمون‌های استاندارد جوانه‎زنی از لحاظ 14 صفت ارزیابی شدند. ارزیابی ژنوتیپی با استفاده از 26 جفت نشانگر ریزماهواره بر روی 53 ژنوتیپ برنج انجام شد. نتایج حاصل از تجزیه ساختار نشان داد که تعداد خوشه‌هایی که پارامتر ΔK را به حداکثر خود می‌رساند برابر 3 می‎باشد. سپس تجزیه ارتباط با استفاده از ماتریس ساختار جمعیت و با مدل‌های آماری GLM و MLM انجام شد. دو مدل MLM در سطح 5%، به ترتیب 75 و 30 نشانگر برای صفات مورد مطالعه شناسایی کردند. نشانگرهای RM11943، RM104، RM190،RM28166، RM231، RM510، RM270 ، RM19367 و RM431 به عنوان نشانگرهای مرتبط با تحمل به تنش اسمزی با توجیه تغییرات مرتبط با چندین صفت جوانه‎زنی شناسایی شدند. همچنین نشانگر RM270 با توجیه 4/40% از تغییرات شاخص بنیه بذر و نشانگر RM276 با توجیه 9/33% از تغییرات درصد آب بافت گیاهچه و نشانگر RM523 با توجیه 6/40 و 7/30% از تغییرات ضریب سرعت جوانه‎زنی در دو مدل، بیشترین ضریب تبیین را در شرایط تنش نسبت به سایر نشانگرها به خود اختصاص دادند که می-تواند دلیلی بر تأیید ارتباط آنها با صفات جوانه‎زنی در شرایط تنش اسمزی باشد. با توجه به نتایج کسب شده، در صورت تأیید نتایج در سایر زمینه‌های ژنتیکی می‎توان از این نشانگرها در برنامه‌های اصلاحی بهره-برداری نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Validation and association analysis of microsatellite markers related to drought and salinity tolerance in Aerobic and Iranian rice under osmotic stress

نویسندگان [English]

  • Tayebe Raiesi 1
  • Atefeh Sabouri 2
1 M.Sc. student of Plant Breeding, Department of Agronomy & Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Assistant Professor, Department of Agronomy & Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
چکیده [English]

The present study was conducted to validate microsatellite markers associated with drought tolerance in rice, in the natural population, including foreign varieties, aerobic rice and Iranian varieties. Plant material under normal and two levels of osmotic stress (-8 and -16 bar using of mannitol) were evaluated by standard germination test in terms of 14 traits. Genotyping was done using 26 pairs of microsatellite markers on 53 genotypes of rice. The results of the structure analysis showed the number of clusters that maximizes ΔK parameter is three. Then association analysis was conducted using the matrix structure of the population by GLM and MLM statistical models. Two MLM models identified, 75 and 30 markers for studied traits at 5% level, respectively. The markers RM11943, RM104, RM190, RM28166, RM231, RM510, RM270, RM19367 and RM431 were identified as markers associated with tolerance to osmotic stress with explain variation of several germination traits. Also the results indicated RM270 with 40.4% of the seed vigor, RM276 with explain variation of 33.9% of the percentage of water content of the seedling, and RM523 with explain variation of 40.6% and 30.7% of the speed of germination coefficient, had highest of coefficient of determination under stress relatively to other markers. That could be a reason for conformation of their relationship with germination traits under osmotic stress. Considering of the obtained results, after verification of results in the other genetic backgrounds we can use these markers in the breeding programs.

کلیدواژه‌ها [English]

  • Structural Analysis
  • Components of germination
  • Drought stress
  • SSR markers
Abdul-Baki AA, Anderson JD (1973) Vigour deterioration in soybean seeds by multiple criteria. Crop Sci. 13: 630-633.

Abdolshahi R, Omidi M, Talei AR, Yazdi Samadi, B (2010) Evaluation of bread wheat genotypes for drought tolerance. Esci. J. Crop Prod. 3 (1): 159-171.

Agrama HA, Eizenga GC, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol. Breeding 19: 341-356.

Agrawal, R (1980) Seed technology. Pub. Co. PVT. LTD. New Dehli. India.

Belhassen E (Ed) (1996) Drought in higher plants: Genetical, Physiological and Molecular biological analysis. ENSA-INRA SGAP, Montpellier, France.

Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci. 47(2): 507-518.

Blum A, Sinmena B, Ziv O (1980) An evaluation of seed and seedling drought tolerance screening tests in wheat. Euphytica. 29: 727-736.

Bouman BA, Xiaoguang M, Huaqi Y, Zhiming W, Junfang W,  Changgui Z,  Bin C (2002) Aerobic Rice (Han Dao): A New Way of Growing Rice in Water-Short Areas, 12th ISCO Conference Beijing.

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdess Y, Buckler ES (2007) TASSEL: Software for association mapping of complex traits in divers samples. Bioinformatics Appl. Note. 2633-2635.

Camberato J, Mccarty B (1999) Irrigation water quality: part I. Salinity. South Carolina Turf grass Foundation New. 6: 68.

Casas AM, Kopahnke D, Habekub A, Schwizer G, Gracia MP, Lasa JM, Ciudad FJ, Codesal P, Moralejo MA, Molina-Cano JL, Igartua E, Ordon F (2006) Marker-trait association for disease resistance in the Spanish barley core collection. Eucarpia, Lleida. 81: 141-145.

Dadras AR (2012) Evaluation of genetic diversity of tobacco (Nicotiana tabacum L.) cultivars using AFLP molecular markers. Iran, MSc. Thesis. Shahid Bahonar University of Kerman.

Dadras AR, Sabouri H, Mohammadi-Nejad G, Sabouri A, Shoaei-Deilami M (2014) Association analysis, genetic diversity and structure analysis of tobacco based on AFLP markers. Mol. Biol. Rep. 41(5): 3317-3329.

Diwan JM, Channbyregowda V, Shenoy P, Salimath Bhat R (2013) Molecular mapping of early vigor related QTLs in rice. Res. J. Biol. 1: 24-30.

Djanaguiraman M, Senthil A, Ramadass R (2004) Mechanism of salt tolerance in rice genotypes during germination and seedling growth. Indian J. Agric. Res. 38 (1): 73-76.

Eemmerich WE, Hardegree SP (1990) Polyethylene glycol solution contact effect on seed germination. Agron. J. 82: 1103-1107.

Ehdaie B, Waines JG (1993) Variation in water use efficiency and its components in wheat. Crop Sci. 31: 1282-1288.

Emam E (2007) Careal Production. Shiraz University Press. pp190.

Evanno G, Reganut E, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620.

Ghimirea KH, Quiatchona LA, Vikram P, Swamy BPM, Dixit SH, Ahmedb H, Hernandeza JE, orromeoa TH, Kumar A (2013) Identification and mapping of a QTL (qDTY1.1) with a consistent effect on grain yield under drought. Field Crops Res. 131:88-96.

Hunter EA, Glasbey CA, Naylor REL (1984) The analyses of data from germination test. J. Agri. Sci. Cambridge. 102: 207-213.

Kanagaraj P, Silvas K, Babu C (2010) Microsatellite Markers linked to drought resistance in Rice (Oryza sativa L.). Curr. Sci. J. 98:836-839.

Karimi H (1983) Crops. 3rd Ed. University of Tehran Press.

Khavazeh M (1998) Effect of salinity on germination, growth, and Cl, Na content of four arid and desert species. MSc Thesis, Isfahan University of Technology, Tehran.

Lutts S, Kinetand JM, Buoharmont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J. Exp. Bot. 46: 1843-1852.

Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am. Soc. Hum. Gen. 67: 170-181.

Roy JK, Bandopadhyay R, Rustgi S, Balyan HS, Gupta PK (2006) Association analysis agronomically important traits using SSR, SAMPL and AFLP markers in bread wheat. Curr Sci. 90: 683-689.

Saghai Mroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic DNA in barely species diversity, chromosomal location, and population dynamics, Proceedings of the National Academy of Sciences, USA 91: 5466–5570.

Soltani A, Maddah V (2010) Applied, Simple programs for Education and Research in Agronomy. Iranian Society Ecological Agriculture. Tehran, Iran.

Switzer RC, Merril CR, Shifrin S (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gel. Anal Biochem. 98: 231-237.

Thomson MJ, de Ocampo M, Egdane J, Akhlasor Rahman M, Godwin Sajise A, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3(2): 148-160.

Tsonev TD,  Lazova GN, Stoinova ZG, Popova LP (1998) A possible role forjasmonic acid in adaptation of barley seedling to salinity stress. J Plant Growth Regul. 17(3): 153-159.

Venuprasad R, Bool ME, Quiatchon L, Atlin GN (2012a) A QTL for rice grain yield in aerobic environments with large effects in three genetic backgrounds. Theor. Appl. Genet. 124: 323-332.

Venuprasad R, Bool ME, Quiatchon L, Cruz Sta, Amante M, Atlin GN, (2012b) A large-effect QTL for rice grain yield under upland drought stress on chromosome 1. Mol. Breed. 30: 535-547.

Vial LK (2007) Aerobic and Alternate-wet-and-dry (AWD) Rice Systems. Nuffield Australia publishing. Griffith NSW 2680. Australia.

Vikram P, Mallikarjuna Swamy BP, Dixit S, Ahmed HU, Sta Cruz MT, Singh AK, Kumar A (2011) qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet. 12: 89.

Wang, XS, Zhu J, Mansueto L, Bruskiewich (2005) Identification of candidate genes for drought stress tolerance in rice by the integration of a genetic (QTL) map with the rice genome physical map. J. Zhejiang Univ. SCI 6B (5): 382-388.

Willenborg CJ, Wildeman JC, Miller AK, Rossnagel BG, Shirtliffe SJ (2005) Oat germination characteristics differ among genotypes, seed size and osmotic potentials. Crop Sci. 45: 2023-2029.

Yang X, Yan J, Shah T, Warburton ML, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y, Xu S, Bai G, Meng Y, Zheng Y, Li J (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor. Appl. Genet. 22: 235-301.

Zhang Q, Wu C, Ren F, Li Y, Zhang C (2012) Association analysis of important agronomical traits of maize inbread lines with SSRs. Australian Journal of Crop Sci. 6(6): 1131-1138.