شناسایی و بررسی خوشه‌ژنی پارالوگ DEVIL در گیاه آلوروپوس لیتورالیس به روش ژنومیکس مقایسه‌ای

نوع مقاله: علمی پژوهشی

نویسندگان

1 استادیار، گروه مهندسی ژنتیک و بیولوژی، پژوهشکده ژنتیک و زیست‌فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.

2 استاد، گروه مهندسی ژنتیک و بیولوژی، پژوهشکده ژنتیک و زیست‌فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.

3 استادیار گروه ژنتیک مولکولی، موسسه ژنتیک گیاهی و تحقیقات گیاهان زراعی لیبنیز (IPK)، آلمان

چکیده

یکی از راهبردهای متداول جهت پیش‌بینی عملکرد ژن‌ها، تجزیه و تحلیل گستره ژنومی و شناسایی خوشه‌های ارتولوگ و پارالوگ در گونه‌های مختلف می‌باشد. با توجه به اهمیت ژن‌های پارالوگ در سازگاری یک گونه به شرایط خاص محیطی، در این تحقیق شناسایی ژن‌های پارالوگ در گیاه هالوفیت آلوروپوس لیتورالیس مدنظر قرار گرفت. بدین منظور پروتئوم این گیاه با برخی از گیاهان تیره گندمیان نظیر برنج، چمن‌جاوری و سورگوم در گستره ژنومی مقایسه شد. بر مبنای آنالیز OrthoMCL، بررسی مقایسه‌ای تعداد 15916 ژن آلوروپوس با توالی پروتئوم دیگر گیاهان، منجر به شناسایی بیش از 10312 گروه‌ ژنی اورتولوگ گردید که در همه گونه‌های مورد بررسی مشترک بوده، در حالیکه70 گروه‌ ژنی پارالوگ به گیاه آلوروپوس اختصاص پیدا نمود. مستندسازی این خوشه‌ها بر مبنای ژن‌انتولوژی حاکی از کارکرد آنها در مسیرهای مهم زیستی نظیر فرایندهای سلولی، فرایندهای متابولیکی DNA، سازماندهی کروماتین، پاسخ به محرک‌های محیطی، رشد و چرخه سلولی بوده است. بررسی بزرگترین گروه‌ این مجموعه، منجر به شناسایی خانواده‌ای از پلی‌پپتیدهای کوچک با اندازه 72-39 اسید آمینه به نام DEVIL‌ (DVL) گردید. بررسی موتیف‌های این گروه‌ ژنی نشان داد 3 موتیف مختلف با مجموع 10 جایگاه در این گروه‌ پروتئینی وجود دارد. نمودار Heatmap بر مبنای آنالیز ترانسکریپتوم نشان داد، الگوی متنوعی از بیان ژن در خانواده ژنی DVL وجود داشته که گواهی بر بازآرایی وظایف این ژن‌ها در فرایندهای زیستی و کارکردهای مولکولی سلول می‌باشد. بررسی عملکردی پپتیدهای فیتوهورمونی AlDVL در مطالعات آتی می‌تواند به شناسایی نقش احتمالی آنها در مکانیسم‌های دخیل در تحمل به تنش خشکی و شوری سودمند باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification and analysis of a DEVIL paralog gene cluster in Aeluropus littoralis by a comparative genomic approach

نویسندگان [English]

  • Seyyed Hamidreza Hashemi-petroudi 1
  • Ghorbanali Nematzadeh 2
  • Markus Kuhlmann 3
1 Assistant Professor, Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Iran.
2 Professor, Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Iran.
3 RG Heterosis, Department Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany.
چکیده [English]

Genome-wide identification of orthologs and paralogs gene clusters across different species is considered as a common strategy for predicting gene function. Regarding to importance role of species-specific paralog genes in adaptation to specific environmental stresses, identification of paralog genes in the Aeluropus littoralis, halophyte plant, was considered in this study. For this purpose, the proteome data of four species including A. littoralis, Oryza sativa, Brachypodium distachyon and Sorghum bicolor was compared genome-widely. Based on OrthoMCL analysis, by comparing of 15916 protein sequences of A. littoralis to proteome of other species, 10312 orthologs gene cluster were identified that shared in all given species while 70 unique paralog gene clusters were devoted to A. littoralis. Gene ontology annotation of these paralog clusters showed that they are involved in key biological processes such as cellular processes, metabolic DNA processes, chromatin organization, response to environmental stimuli and cell growth and cycle. The study of the largest cluster of this set led to the identification of a family of small polypeptides (72-39 aa) that is called DEVIL (DVL). Analysis of A. littoralis transcriptome data in a Heatmap display a divergence in gene expression patterns of DVL gene family that could be an evident for their sub‐functionalization in biological processes and molecular functions of the cell. Functional analysis of AlDVL peptide hormones (phytohormones) could be useful for identifying their potential role in the mechanisms involved in drought and salinity tolerance.

کلیدواژه‌ها [English]

  • Aeluropus littoralis
  • halophytes
  • small polypeptides
  • phytohormone
  • DEVIL
Andrews SJ, Rothnagel JA (2014) Emerging evidence for functional peptides encoded by short open reading frames. Nat. Rev. Genet. 15(3): 193-204.

Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X, Ott F, Muller J, Alonso-Blanco C, Borgwardt K, Schmid KJ and Weigel D (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat. Genet. 43(10): 956-963.

Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. 10(1): 8.

Emamjomeh A, Goliaei B, Zahiri J, Ebrahimpour R (2015) Prediction of gene co-expression by quantifying heterogeneous features. Curr. Bioinform. 10(4): 414-424.

Faraji S, Hashemi-Petroudi SH, Najafi-Zarrini H, Ranjbar GA (2018) Characterization and expression profiling of AlPKL gene in response to salinity stress and recovery conditions in halophyte Aeluropus littoralis. Crop bitech. 7(20): 13-27.

Faraji S, Najafi-Zarrini H, Hashemi-Petroudi S, Ranjbar G (2017) AlGLY I gene implicated in salt stress response from halophyte Aeluropus littoralis. Russ. J. Plant Physiol. 64(6): 850-860.

Faraji S, Najafi-Zarrini H, Hashemi-Petroudi SH, Ranjbar GA (2017) Comparative expression profiling of four salt-inducible genes from Aeluropus littoralis. Iran. J. Genet. Plant Breed. 6(1): 1-7.

Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst. Zool. 19(2): 99-113.

Gabaldón T, Koonin EV (2013) Functional and evolutionary implications of gene orthology. Nature Reviews Genetics. 14(5): 360.

Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 296(5565): 92-100.

Goffin C, Ghuysen JM (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62(4): 1079-1093.

Guo P, Yoshimura A, Ishikawa N, Yamaguchi T, Guo Y, Tsukaya H (2015) Comparative analysis of the RTFL peptide family on the control of plant organogenesis. J. Plant Res. 128(3): 497-510.

Hashemi-Petroudi SH, Ghorbani H, Kuhlmann M (2018) Isolation Phosphoglycerate Dehydrogenase gene from Aeluropus littoralis halophyte plant and functional analysis of T-DNA mutant in Arabidopsis thaliana. Crop bitech. 8(23): 79-92.

Hashemi SH, Nematzadeh G, Ahmadian G, Yamchi A, Kuhlmann M (2016) Identification and validation of Aeluropus littoralis reference genes for Quantitative Real-Time PCR Normalization. J. Biol. Res. 3 (1): 2-18.

Hashemipetroudi S, Nematzadeh G, Ahmadian G, Yamchi A, Kuhlmann M (2016) Expression analysis of salt stress related expressed sequence tags (ESTs) from Aeluropus littoralis by quantitative real-time PCR. Biosci. Biotech. Res. Comm. 9(3): 445-456.

Kastin A (2013) Handbook of biologically active peptides, Academic press.

Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 39: 309-338.

Li L, Stoeckert CJ Jr. Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13(9): 2178-2189.

Liu FF, Tsai JJ, Chen R-M, Chen S, Shih S (2004) FMGA: finding motifs by genetic algorithm. Bioinformatics and Bioengineering, 2004. BIBE 2004. Proceedings. Fourth IEEE Symposium on, IEEE.

Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. The Plant Journal. 53(4): 661-673.

Mahesh HB, Subba P, Advani J, Shirke MD, Loganathan RM, Chandana SL, Shilpa S, Chatterjee O, Pinto SM, Prasad TSK, Gowda M (2018) Multi-Omics Driven Assembly and Annotation of the Sandalwood (Santalum album) Genome. Plant Physiol. 176(4): 2772-2788.

Matsubayashi Y (2014) Posttranslationally modified small-peptide signals in plants. Annu. Rev. Plant Biol. 65: 385-413.

Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annu. Rev. Plant Biol. 57: 649-674.

Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Science. 282(5389): 662, 679-682.

Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu. Rev. Plant Biol. 61: 443-462.

Mohsenzadeh S, Malboobi M, Razavi K, Farrahi-Aschtiani S (2006) Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit. Environ. Exp. Bot. 56(3): 314-322.

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681.

Narita NN, Moore S, Horiguchi G, Kubo M, Demura T, Fukuda H, Goodrich J, Tsukaya H (2004) Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana. Plant J. 38(4): 699-713.

Peters AE, Bavishi A, Cho H, Choudhary M (2012) Evolutionary constraints and expression analysis of gene duplications in Rhodobacter sphaeroides. BMC Res. Notes. 5(1): 192.

Proost S, Van Bel M, Sterck L, Billiau K, Van Parys T, Van De Peer Y, Vandepoele K (2009) PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell. 21(12): 3718-3731.

Roth C, Rastogi S, Arvestad L, Dittmar K, Light S, Ekman D, Liberles DA (2007) Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms. J. Exp. Zool. B Mol. Dev. Evol. 308 (1): 58-73.

Shang H, Li W, Zou C, Yuan Y (2013) Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns. J. Integr. Plant Biol. 55(7): 663-676.

Studer RA, Robinson-Rechavi M (2009) How confident can we be that orthologs are similar, but paralogs differ? Trends Genet. 25(5): 210-216.

Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu. Rev. Genet. 38: 615-643.

Wen J, Lease KA, Walker JC (2004) DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant J. 37(5): 668-677.

Wen J, Walker J (2006) DVL peptides are involved in plant development. Handbook of Biologically Active Peptides, Elsevier: 17-22.