با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران.

2 استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران.

3 دکتری تخصصی، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران.

4 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران.

چکیده

تنش‌های غیرزیستی از جمله کم‌آبی در گیاهان منجر به تغییرات فیزیولوژیکی و بیوشیمیایی می‌شوند. گیاهان مانند سایر موجودات زنده با تنظیم بیان ژن به تغییرات محیطی پاسخ می‌دهند. عوامل رونویسی، کلیدی‌ترین عناصر مولکولی برای تنظیم بیان ژن‌ها به‌شمار می‌روند. نقش عوامل رونویسی شوک حرارتی (HSFs) در مکانیسم مولکولی پاسخ به انواع تنش‌های غیرزیستی مورد تأیید قرارگرفته است، از این رو، در مطالعه حاضر برای شناسایی، طبقه‌بندی و بررسی تغییرات بیان‌HSFها در عدس تحت تنش کم‌آبی از تجزیه و تحلیل داده‌های توالی‌یابی شده RNA استفاده شد و در نهایت بیان برخی از رونوشت‌ها با استفاده از روش qRT-PCR مورد بررسی قرار گرفت. از مجموع رونوشت‌های سرهم‌بندی شده عدس، 35 رونوشت متعلق به سه کلاس HSF شناسایی شد. همچنین نتایج نشان داد که در شرایط کم‌آبی از میان HSFهای شناسایی‌شده، بیان چهار رونوشت شامل HSFA9 و HSFA2 افزایش و در مقابل بیان HSFA6B و HSFB4 کاهش‌یافته است. علاوه بر این یافته‌های ما نشان داد که در پاسخ به تنش خشکی تغییری در بیان رونوشت‌های HSF کلاس C دیده نمی‌شود. به‌طورکلی، یافته‌های این پژوهش بینشی در مورد ژن‌های HSF عدس و نقش احتمالی آن‌ها در پاسخ به تنش کم‌آبی ایجاد نموده‌است که می‌توان از آن به‌عنوان پایه‌ای در آزمایش‌های آتی برای درک بهتر مکانیسم مولکولی تحمل عدس به تنش کم‌آبی استفاده نمود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Identification and expression pattern analysis of some HSF genes in lentil (Lens culinaris L.), under water deficit condition

نویسندگان [English]

  • Somayeh Ebrahimi 1
  • Ahmad Ismaili 2
  • Seyed Sajad Sohrabi 3
  • Hasan Torabi Podeh 4

1 M.Sc. Student, Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.

2 Professor, Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.

3 Ph.D., Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.

4 Associate Professor, Department of Water Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.

چکیده [English]

Abiotic stresses, including drought in plants, lead to physiological and biochemical changes that are controlled by regulating gene expression. Transcription factors are considered as the most key molecular elements for regulating genes in response to biotic or abiotic stresses. The role of Heat shock transcription factors (HSFs) in the molecular mechanism of response to various abiotic stresses has been confirmed; therefore, this study used the analysis of RNA sequencing data to identify, classify and evaluate changes in HSF expression in lentil under water-deficit stress, and finally, the expression of some transcripts were examined using qRT-PCR. From the total assembled transcripts of lentil, 35 transcripts belonging to three HSF classes were identified. Also, according to the results, the expression of 14.28% of the identified transcripts, which often belonged to class A, is altered in lentil under water-deficit stress. The expression of 14.28% of the identified transcripts, most of which belonged to class A, is altered in lentil under water-deficit stress. In general, the results show that changes in the expression of some transcripts of one HSF gene take precedence over those of other transcripts of that gene in response to drought stress; therefore, it is of particular importance to study alternative splicing in response to this environmental factor in lentil. The HSF genes identified in this study can be used in future experiments to understand better the molecular mechanism of water-deficit stress tolerance in lentil.

کلیدواژه‌ها [English]

  • Water-deficit
  • HSFs
  • Lentil
  • qRT-PCR
  • RNA-seq
Arumuganathan, K., & Earle, E. D. (1991). Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter, 9(3), 208-218. doi: 10.1007/BF02672069 Bechtold, U., Albihlal, W. S., Lawson, T., Fryer, M. J., Sparrow, P. A. C., Richard, F., & Mullineaux, P. M. (2013). Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection. Journal of Experimental Botany, 64(11), 3467-3481. doi: 10.1093/jxb/ert185 Bharti, K., von Koskull-Döring, P., Bharti, S., Kumar, P., Tintschl-Körbitzer, A., Treuter, E., & Nover, L. (2004). Tomato Heat Stress Transcription Factor HsfB1 Represents a Novel Type of General Transcription Coactivator with a Histone-Like Motif Interacting with the Plant CREB Binding Protein Ortholog HAC1[W]. The Plant Cell, 16(6), 1521-1535. doi: 10.1105/tpc.019927 Bi, H., Zhao, Y., Li, H., & Liu, W. (2020). Wheat heat shock factor tahsfa6f increases aba levels and enhances tolerance to multiple abiotic stresses in transgenic plants. [Article]. International Journal of Molecular Sciences, 21(9). doi: 10.3390/ijms21093121 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. doi: 10.1093/bioinformatics/btu170 Chauhan, H., Khurana, N., Agarwal, P., & Khurana, P. (2011). Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Molecular Genetics and Genomics, 286(2), 171. doi: 10.1007/s00438-011-0638-8 Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. doi: 10.1093/bioinformatics/bti610 Dossa, K., Diouf, D., & Cissé, N. (2016). Genome-Wide Investigation of Hsf Genes in Sesame Reveals Their Segmental Duplication Expansion and Their Active Role in Drought Stress Response. [Original Research]. Frontiers in Plant Science, 7(1522). doi: 10.3389/fpls.2016.01522 Driedonks, N., Xu, J., Peters, J. L., Park, S., & Rieu, I. (2015). Multi-Level Interactions Between Heat Shock Factors, Heat Shock Proteins, and the Redox System Regulate Acclimation to Heat. [Review]. Frontiers in Plant Science, 6. doi: 10.3389/fpls.2015.00999 Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., & Bateman, A. (2016). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 44(D1), D279-D285. doi: 10.1093/nar/gkv1344 Giorno, F., Wolters-Arts, M., Grillo, S., Scharf, K.-D., Vriezen, W. H., & Mariani, C. J. (2010). Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. 61(2), 453-462. Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., & Regev, A. (2011). Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology, 29(7), 644-652. doi: 10.1038/nbt.1883 Guo, J., Wu, J., Ji, Q., Wang, C., Luo, L., Yuan, Y., & Wang, J. (2008). Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. Genet Genomics, 35(2), 105-118. doi: 10.1016/s1673-8527(08)60016-8 Guo, M., Lu, J.-P., Zhai, Y.-F., Chai, W.-G., Gong, Z.-H., & Lu, M.-H. (2015). Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.). Genet Genomics, 15(1), 1-20. Hosseini, S. Z., Ismaili, A., Nazarian-Firouzabadi, F., Fallahi, H., Rezaei Nejad, A., & Sohrabi, S. S. (2021). Dissecting the molecular responses of lentil to individual and combined drought and heat stresses by comparative transcriptomic analysis. Genomics, 113(2), 693-705. doi: https://doi.org/10.1016/j.ygeno.20 20.12.038 Hu, W., Hu, G., & Han, B. (2009). Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Science, 176(4), 583-590. doi: https://doi.org/10.1016/j.plantsci.2009 .01.016 Huang, Y.-C., Niu, C.-Y., Yang, C.-R., & Jinn, T.-L. (2016). The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses Plant Physiology, 172(2), 1182-1199. doi: 10.1104/pp.16.00860%JPlantPhysiology Hwang, S. M., Kim, D. W., Woo, M. S., Jeong, H. S., Son, Y. S., Akhter, S., & Bahk, J. D. (2014). Functional characterization of Arabidopsis HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions. Plant, Cell & Environment, 37(5), 1202-1222. doi: https://doi.org/10.1111/pce.12228 Janmohammadi, M., Mostafavi, H., & Sabaghnia, N. (2014). Effects of enzymatic biofertiliser on growth and yield of lentil genotypes under deficit irrigation. Proceedings of the Latvian Academy of Sciences. Section B: Natural, Exact, and Applied Sciences (Latvia), 68, 174-179. Kharisma, A. D., Arofatullah, N. A., Yamane, K., Tanabata, S., & Sato, T. (2022). Regulation of defense responses via heat shock transcription factors in Cucumis sativus L. against Botrytis cinerea. Journal of General Plant Pathology, 88(1), 17-28. doi: 10.1007/s10327-021-01041-6 Khazaei, H., Caron, C. T., Fedoruk, M., Diapari, M., Vandenberg, A., Coyne, C. J., & Bett, K. E. (2016). Genetic Diversity of Cultivated Lentil (Lens culinaris Medik.) and Its Relation to the World's Agro-ecological Zones. [Original Research]. Frontiers in Plant Science, 7(1093). doi: 10.3389/fpls.2016.01093 Kmiecik, S. W., & Mayer, M. P. (2022). Molecular mechanisms of heat shock factor 1 regulation. [Review]. Trends in Biochemical Sciences, 47(3), 218-234. doi: 10.1016/j.tibs.2021.10.004 Kumar, S., Barpete, S., Kumar, J., Gupta, P., & Sarker, A. (2013). Global lentil production: constraints and strategies. SATSA Mukhapatra-Annual Technical, 17, 1-13. Kumar, S., Hamwieh, A., Manickavelu, A., Kumar, J., Sharma, T. R., & Baum, M. (2014). Advances in lentil genomics. Legumes in the Omic Era, 111-130. Kumar, S., Rajendran, K., Kumar, J., Hamwieh, A., & Baum, M. (2015). Current knowledge in lentil genomics and its application for crop improvement. [Review]. Frontiers in Plant Science, 6(78), 1-15. doi: 10.3389/fpls.2015.00078 Ladizinsky, G., & Abbo, S. (2015). The Search for Wild relatives of Cool Season Legumes: Springer. Li, P.-S., Yu, T.-F., He, G.-H., Chen, M., Zhou, Y.-B., Chai, S.-C., & Ma, Y.-Z. (2014). Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genomics, 15(1), 1009. doi: 10.1186/1471-2164-15-1009 Li, W., Wan, X.-L., Yu, J.-Y., Wang, K.-L., & Zhang, J. (2019). Genome-wide identification, classification, and expression analysis of the Hsf gene family in carnation (Dianthus caryophyllus). International Journal of Molecular Sciences, 20(20), 5233. Lin, Y.-X., Jiang, H.-Y., Chu, Z.-X., Tang, X.-L., Zhu, S.-W., & Cheng, B. (2011). Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics, 12(1), 1-14. Lin, Y., Cheng, Y., Jin, J., Jin, X., Jiang, H., Yan, H., & Cheng, B. (2014). Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes. PloS One, 9(7), e102825. Liu, M., Huang, Q., Sun, W., Ma, Z., Huang, L., Wu, Q., & Chen, H. J. B. g. (2019). Genome-wide investigation of the heat shock transcription factor (Hsf) gene family in Tartary buckwheat (Fagopyrum tataricum). 20(1), 1-17. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi: https://doi.org/10.1006/meth.2001. 1262 Manna, M., Thakur, T., Chirom, O., Mandlik, R., Deshmukh, R., & Salvi, P. (2021). Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. [Article]. Physiologia Plantarum, 172(2), 847-868. doi: 10.1111/ppl.13268 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. [next generation sequencing; small RNA; microRNA; adapter removal]. Bioinformatics in Action, 17(1), 3. doi: 10.14806/ej.17.1.200 Mishra, S. K., Poonia, A. K., Chaudhary, R., Baranwal, V. K., Arora, D., Kumar, R., & Chauhan, H. (2020). Genome-wide identification, phylogeny and expression analysis of HSF gene family in barley during abiotic stress response and reproductive development. Plant Gene, 23, doi: 10.1016/j.plgene.2020.100231 Morgil, H., Tardu, M., Cevahir, G., & Kavakli, İ. H. (2019). Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long-term water deficits. Functional & Integrative Genomics, 19(5), 715-727. doi: 10.1007/s10142-019-00675-2 Nagaraju, M., Reddy, P. S., Kumar, S. A., Srivastava, R. K., Kishor, P. B., & Rao, D. M. (2015). Genome-wide Scanning and Characterization of Sorghum bicolor L. Heat Shock Transcription Factors. Curr Genomics, 16(4), 279-291. doi: 10.2174/13892029166661503132 30812 Nover, L., Bharti, K., Döring, P., Mishra, S. K., Ganguli, A., & Scharf, K. D. (2001). Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress & Chaperones, 6(3), 177-189. doi: 10.1379/1466-1268(2001)0062.0.co;2 Ohama, N., Kusakabe, K., Mizoi, J., Zhao, H., Kidokoro, S., Koizumi, S., & Yamaguchi-Shinozaki, K. (2016). The Transcriptional Cascade in the Heat Stress Response of Arabidopsis Is Strictly Regulated at the Level of Transcription Factor Expression. The Plant Cell, 28(1), 181-201. doi: 10.1105/tpc.15.00435 Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., & Lopez, R. (2005). InterProScan: protein domains identifier. Nucleic acids research, 33(suppl_2), W116-W120. Ramtekey, V., Bansal, R., Aski, M. S., Kothari, D., Singh, A., Pandey, R., & Dikshit, H. K. (2021). Genetic variation for traits related to phosphorus use efficiency in lens species at the seedling stage. [Article]. Plants, 10(12). doi: 10.3390/plants10122711 Reddy, P. S., Kavi Kishor, P. B., Seiler, C., Kuhlmann, M., Eschen-Lippold, L., Lee, J., & Sreenivasulu, N. (2014). Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development. PloS One, 9(3), e89125. Rivals, I., Personnaz, L., Taing, L., & Potier, M.-C. (2007). Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics, 23(4), 401-407. doi: 10.1093/bioinformatics/btl633 Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress Plant Physiology, 134(4), 1683-1696. doi: 10.1104/pp.103.033431 Sabaghpour, S., Sarker, A., Safikhani, M., & Erskine, W. J. (2007). Registration of ‘Gachsaran’Lentil. Journal of Plant Registrations, 1(1), 39-39. Sabaghpour, S. H., Seyedi, F., Mahmoodi, A. A., Safikhani, M., Pezeshkpour, P., Rostemi, B., & Jahangiri, A. (2013). Cultivar release: Kimiya, a new high yielding lentil cultivar for moderate cold and semi warm climate of IRAN. Seed And Plant Improvement Journal, 29-1(2), 1-15. Scharf, K.-D., Berberich, T., Ebersberger, I., & Nover, L. (2012). The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1819(2), 104-119. doi: https://doi.org/10.1016/j.bbagrm. 2011.10.002 Shim, D., Hwang, J.-U., Lee, J., Lee, S., Choi, Y., An, G., & Lee, Y. (2009). Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. The Plant cell, 21(12), 4031-4043. doi: 10.1105/tpc.109.066902 Singh, D., Singh, C. K., Taunk, J., & Tomar, R. S. S. (2016). Genetic analysis and molecular mapping of seedling survival drought tolerance gene in lentil (Lens culinaris Medikus). Molecular Breeding, 36(5), 58. doi: 10.1007/s11032-016-0474-y Sohrabi, S. S., Ismaili, A., Nazarian-Firouzabadi, F., Fallahi, H., & Hosseini, S. Z. (2022). Identification of key genes and molecular mechanisms associated with temperature stress in lentil. Gene, 807, 145952. doi: https://doi.org/10.1016/j.gene.202 1.145952 Song, L., & Florea, L. (2015). Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience, 4(1), s13742-13015-10089-y. doi: 10.1186/s13742-015-0089-y Srivastava, R., & Vasishtha, H. (2012). Saponins and lectins of Indian chickpeas (Cicer arietinum) and lentils (Lens culinaris). Indian Journal of Agricultural Biochemistry, 25(1), 44-47. Stoddard, F. L., Balko, C., Erskine, W., Khan, H. R., Link, W., & Sarker, A. (2006). Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica, 147(1), 167-186. doi: 10.1007/s10681-006-4723-8 Sultana, R., Choudhary, A., Pal, A., Saxena, K., Prasad, B., & Singh, R. (2014). Abiotic stresses in major pulses: Current status and strategies Approaches to Plant Stress and Their Management (pp. 173-190): Springer. Sun, X., Huang, N., Li, X., Zhu, J., Bian, X., Li, H., & Luo, H. (2021). A chloroplast heat shock protein modulates growth and abiotic stress response in creeping bentgrass. [Article]. Plant Cell and Environment, 44(6), 1769-1787. doi: 10.1111/pce.14031 Suri, G. K., Braich, S., Noy, D. M., Rosewarne, G. M., Cogan, N. O. I., & Kaur, S. (2022). Advances in lentil production through heterosis: Evaluating generations and breeding systems. PLoS One, 17(2 February). doi: 10.1371/journal.pone.0262857 Swindell, W. R., Huebner, M., & Weber, A. P. (2007). Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 8(1), 125. doi: 10.1186/1471-2164-8-125 Tan, B., Yan, L., Li, H., Lian, X., Cheng, J., Wang, W., & Feng, J. (2021). Genome-wide identification of HSF family in peach and functional analysis of PpHSF5 involvement in root and aerial organ development. [Article]. PeerJ, 9. doi: 10.7717/peerj.10961 Tiwari, M., Kumar, R., Min, D., & Jagadish, S. V. K. (2022). Genetic and molecular mechanisms underlying root architecture and function under heat stress—A hidden story. [Review]. Plant Cell and Environment. doi: 10.1111/pce.14266 Victor, M., & Benecke, B.-J. (1998). Expression levels of heat shock factors are not functionally coupled to the rate of expression of heat shock genes. Molecular Biology Reports, 25(3), 135-141. doi: 10.1023/A:1006801205904 Wang, F., Dong, Q., Jiang, H., Zhu, S., Chen, B., & Xiang, Y. (2012). Genome-wide analysis of the heat shock transcription factors in Populus trichocarpa and Medicago truncatula. Molecular Biology Reports, 39(2), 1877-1886. Wang, Y., Dai, Y., Tao, X., Wang, J.-Z., Cheng, H.-Y., Yang, H., & Ma, X.-R. (2016). Heat shock factor genes of tall fescue and perennial ryegrass in response to temperature stress by RNA-Seq analysis. Frontiers in Plant Science, 6, 1226. Wen, F., Wu, X., Li, T., Jia, M., Liu, X., Li, P., & Yue, X. J. P. (2017). Genome-wide survey of heat shock factors and heat shock protein 70s and their regulatory network under abiotic stresses in Brachypodium distachyon. PloS One, 12(7), e0180352. Xue, G. P., Sadat, S., Drenth, J., & McIntyre, C. L. (2014). The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. Journal of Experimental Botany, 65(2), 539-557. Zeng, J., Wu, C., Wang, C., Liao, F., Mo, J., Ding, Z., Hu, W. (2020). Genomic analyses of heat stress transcription factors (HSFs) in simulated drought stress response and storage root deterioration after harvest in cassava. [Article]. Molecular Biology Reports, 47(8), 5997-6007. doi: 10.1007/s11033-020-05673-3 Zhang, Q., Geng, J., Du, Y., Zhao, Q., Zhang, W., Fang, Q., Du, J. (2022). Heat shock transcription factor (Hsf) gene family in common bean (Phaseolus vulgaris): genome-wide identification, phylogeny, evolutionary expansion and expression analyses at the sprout stage under abiotic stress. BMC Plant Biology, 22(1), 33. doi: 10.1186/s12870-021-03417-4