با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی دکتری بیوتکنولوژی کشاورزی، گروه ژنتیک و تولیدات گیاهی، دانشکده کشاورزی دانشگاه کردستان، سنندج، ایران. و بخش زیست‌شناسی سامانه‌ها، پژوهشگاه بیوتکنولوژی کشاورزی، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران.

2 دانشیار گروه ژنتیک و تولیدات گیاهی، دانشکده کشاورزی دانشگاه کردستان، سنندج، ایران.

3 استاد گروه علوم مولکولی، دانشگاه مک کواری، نورث راید، ملبورن، استرالیا.

4 بخش زیست‌شناسی سامانه‌ها، پژوهشگاه بیوتکنولوژی کشاورزی، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

سن گندم با نام علمی Eurygaster integriceps یکی از آفات شناخته شده مزارع گندم در ایران و غرب آسیا است. نقش نوروپپتید‌‌ها در مراحل رشد و نمو حشرات منجر به ‌ایجاد چشم‌انداز امیدوارکننده‌ای جهت تولید نسل جدیدی از حشره‌کش‌ها‌ی زیستی مبتنی بر کاربرد اختصاصی شده است. نوروپپتیدهای حشرات به همراه گیرنده‌های اختصاصی آن‌ها یکی از متنوع‌ترین پروتئین‌هایی هستند که فعالیت‌های فیزیولوژیکی و رفتاری را در حشرات کنترل می‌کنند. آلاتواستاتین یکی از نوروپپتیدهای مهم در حشرات می‌باشد که با مهار هورمون جوانی، در تنظیم فرآیندهای فیزیولوژیکی نظیر تغذیه و متابولیسم در برخی از حشرات نقش دارد. در این مطالعه با استفاده از اطلاعات حاصل از ترانسکریپتوم حشره بالغ سن گندم، نوروپپتید‌ها و گیرنده‌های اختصاصی خانواده آلاتواستاتین در سن گندم مورد بررسی قرار گرفت. آنالیز بیوانفورماتیکی و بررسی‌های فیلوژنتیکی داده‌ها منجر به شناسایی چهار نوروپپتید از خانواده آلاتواستاتین A، B و C و همچنین گیرنده‌های نوروپپتیدی آلاتواستاتین A و B شد. نتایج نشان داد که نوروپپتیدهای خانواده آلاتواستاتین شناسایی شده سن گندم در فرایندهای فیزیولوژیک متنوعی دخیل می‌باشند. با توجه به نقش مهم نوروپپتیدها در حشرات، این نوروپپتیدها می‌توانند امکان طراحی حشره‌کش‌های اختصاصی سازگار با محیط زیست به منظور مدیریت کنترل سن گندم را برای آینده فراهم آورند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Identification of allatostatin neuropeptides family and their receptors in Sunn pest (Eurygaster integriceps) using transcriptome wide analysis

نویسندگان [English]

  • Mehrbanno Kazemi Alamuti 1
  • Mohammad Majdi 2
  • Ghasem Hosseini Salekdeh 3
  • Mohammad Reza Ghaffari 4

1 Ph.D. Student, Department of Plant Genetics and Production, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran. and Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

2 Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

3 Prof. Department of Molecular Sciences, Macquarie University, North Ryde, NSW. Australia.

4 Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

چکیده [English]

Eurygaster integriceps is one of the known pests of wheat fields in Iran and West Asia. The role of neuropeptides in the stages of insect’s growth has led to a promising perspective for the production of a new generation of bio-insecticides based specific application. Insect’s neuropeptides along with their specific receptors are one of the most diverse proteins that control physiological and behavioral activities in insects. Allatostatin is one of the important neuropeptides in insects which, by inhibiting the youth hormone, plays a role in regulating physiological processes such as feed and metabolism in some insects. In this study, using the information obtained from adult Eurygaster integriceps transcriptome, neuropeptides and specific receptors of the allatostatin family were investigated. Bioinformatics and phylogenetic studies of the data led to identify four neuropeptides A, B and C allatostatin family, as well as the neuropeptide receptors of A and B allatostatin. The results showed that the neuropeptides of the allatostatin family identified in Eurygaster integriceps are involved in various physiological processes. Considering the important role of neuropeptides in insects, these neuropeptides can be used to design specific insecticides compatible with the environment for managing control Eurygaster integriceps in future.

کلیدواژه‌ها [English]

  • Allatostatin
  • GPCR
  • Neuropeptide
  • RNA-Seq
Agrawal, P., Kumar, S., Singh, A., Raghava, G. P., & Singh, I. K. (2019). NeuroPIpred: a tool to predict, design and scan insect neuropeptides. Scientific Reports, 9(1), 5129. Alizadeh, M., Sheikhi Garjan, A., Ma'mani, L., Bandehhagh, A., & Hosseini Salekdeh, G. (2022). Control of Sunn-Pest, Eurygaster integriceps Puton, using Deltamethrin Nanopesticide. Applied Entomology and Phytopathology, 89(2), 213-223. (in Persian) Angelo, M. J. (2010). Corn, Carbon and Conservation: Rethinking US Agricultural Policy in a Changing Global Environment. University of Florida Levin College of Law Research Paper, (2010-03), 17. Bachtel, N. D., Hovsepian, G. A., Nixon, D. F., & Eleftherianos, I. (2018). Allatostatin C modulates nociception and immunity in Drosophila. Scientific reports, 8(1), 7501. Christ, P., Hill, S. R., Schachtner, J., Hauser, F., & Ignell, R. (2018). Functional characterization of the dual allatostatin-A receptors in mosquitoes. Peptides, 99, 44-55. Critchley, B. R. (1998). Literature review of sunn pest Eurygaster integriceps Put. (Hemiptera, Scutelleridae). Crop protection, 17(4), 271-287. Davari, A., & Parker, B. L. (2018). A review of research on Sunn Pest {Eurygaster integriceps Puton (Hemiptera: Scutelleridae)} management published 2004–2016. Journal of Asia-Pacific Entomology, 21(1), 352-360. Elakkiya, K., Yasodha, P., Leo Justin, C. G., & Kumar, V. A. (2019). Neuropeptides as novel insecticidal agents. Int J Curr Microbiol Appl Sci, 8(02), 2019. Hauser, F., Cazzamali, G., Williamson, M., Park, Y., Li, B., Tanaka, Y., ... & Grimmelikhuijzen, C. J. (2008). A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Frontiers in neuroendocrinology, 29(1), 142-165. Hentze, J. L., Carlsson, M. A., Kondo, S., Nässel, D. R., & Rewitz, K. F. (2015). The neuropeptide allatostatin A regulates metabolism and feeding decisions in. Hilger, D., Masureel, M. and Kobilka, B.K., 2018. Structure and dynamics of GPCR signaling complexes. Nature structural & molecular biology, 25(1), pp.4-12. Hou, L., Jiang, F., Yang, P., Wang, X., & Kang, L. (2015). Molecular characterization and expression profiles of neuropeptide precursors in the migratory locust. Insect biochemistry and molecular biology, 63, 63-71. Huang, S. S., Chen, S. S., Zhang, H. L., Yang, H., Yang, H. J., Ren, Y. J., & Kai, Z. P. (2018). Structure-Based Discovery of Nonpeptide Allatostatin Analogues for Pest Control. Journal of agricultural and food chemistry, 66(14), 3644-3650. Iyison, N. B., Sinmaz, M. G., Sahbaz, B. D., Shahraki, A., Aksoydan, B., & Durdagi, S. (2020). In silico characterization of adipokinetic hormone receptor and screening for pesticide candidates against stick insect, Carausius morosus. Journal of Molecular Graphics and Modelling, 101, 107720. Jung, S. H., Lee, J. H., Chae, H. S., Seong, J. Y., Park, Y., Park, Z. Y., & Kim, Y. J. (2014). Identification of a novel insect neuropeptide, CNMa and its receptor. FEBS letters, 588(12), 2037-2041. Kang, X. L., Zhang, J. Y., Wang, D., Zhao, Y. M., Han, X. L., Wang, J. X., & Zhao, X. F. (2019). The steroid hormone 20-hydroxyecdysone binds to dopamine receptor to repress lepidopteran insect feeding and promote pupation. PLoS Genetics, 15(8), e1008331. Kazemi Alamuti, M., Majdi, M., & Hossini Salekdeh, G. (2021). A Historical Perspective to Sunn Pest (Eurygaster Integriceps) Management of Wheat from Traditional to Modern Methods. Journal of Biosafety, 14(3), 101-116. Kim, Y. J., Žitňan, D., Galizia, C. G., Cho, K. H., & Adams, M. E. (2006). A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Current Biology, 16(14), 1395-1407. Kivan, M., & Kilic, N. (2005). Effects of storage at low-temperature of various heteropteran host eggs on the egg parasitoid, Trissolcus semistriatus. BioControl, 50(4), 589-600. Lavore, A., Perez-Gianmarco, L., Esponda-Behrens, N., Palacio, V., Catalano, M. I., Rivera-Pomar, R., & Ons, S. (2018). Nezara viridula (Hemiptera: Pentatomidae) transcriptomic analysis and neuropeptidomics. Scientific Reports, 8(1), 1-15. Letunic, I. and Bork, P., 2007. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics, 23(1), pp.127-128. Li, B., Predel, R., Neupert, S., Hauser, F., Tanaka, Y., Cazzamali, G., ... & Park, Y. (2008). Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum. Genome research, 18(1), 113-122. Liu, A., Shi, W., Lin, D., & Ye, H. (2021). A Possible Role of Allatostatin C in Inhibiting Ecdysone Biosynthesis Revealed in the Mud Crab Scylla paramamosain. Frontiers in Marine Science, 8, 740251. Liu, N., Li, T., Wang, Y. and Liu, S., 2021. G-protein coupled receptors (GPCRs) in insects—A potential target for new insecticide development. Molecules, 26(10), p.2993. Lubawy, J., & Hornik, J. (2022). The effect of B-type allatostatin neuropeptides on crosstalk between the insect immune response and cold tolerance. Scientific Reports, 12(1), 20697. Lwalaba, D., Hoffmann, K. H., & Woodring, J. (2010). Control of the release of digestive enzymes in the larvae of the fall armyworm, Spodoptera frugiperda. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 73(1), 14-29. Matthews, H. J., Audsley, N., & Weaver, R. J. (2007). Interactions between allatostatins and allatotropin on spontaneous contractions of the foregut of larval Lacanobia oleracea. Journal of insect physiology, 53(1), 75-83. Nygaard, S., Zhang, G., Schiøtt, M., Li, C., Wurm, Y., Hu, H., ... & Boomsma, J. J. (2011). The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome research, 21(8), 1339-1348. Ons, S., Sterkel, M., Diambra, L., Urlaub, H. and Rivera‐Pomar, R., 2011. Neuropeptide precursor gene discovery in the Chagas disease vector Rhodnius prolixus. Insect molecular biology, 20(1), pp.29-44. Pandit, A. A., Ragionieri, L., Marley, R., Yeoh, J. G., Inward, D. J., Davies, S. A., ... & Dow, J. A. (2018). Coordinated RNA-Seq and peptidomics identify neuropeptides and G-protein coupled receptors (GPCRs) in the large pine weevil Hylobius abietis, a major forestry pest. Insect biochemistry and molecular biology, 101, 94-107. Parker, B. L., Amir-Maafi, M., Skinner, M., Kim, J. S., & El Bouhssini, M. (2011). Distribution of sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), in overwintering sites. Journal of Asia-Pacific Entomology, 14(1), 83-88. Posnien, N., Hopfen, C., Hilbrant, M., Ramos-Womack, M., Murat, S., Schönauer, A., ... & McGregor, A. P. (2012). Evolution of eye morphology and rhodopsin expression in the Drosophila melanogaster species subgroup. PloS one, 7(5), e37346. Price, M. D., Merte, J., Nichols, R., Koladich, P. M., Tobe, S. S., & Bendena, W. G. (2002). Drosophila melanogaster flatline encodes a myotropin orthologue to Manduca sexta allatostatin. Peptides, 23(4), 787-794. Roller, L., Yamanaka, N., Watanabe, K., Daubnerová, I., Žitňan, D., Kataoka, H., & Tanaka, Y. (2008). The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect biochemistry and molecular biology, 38(12), 1147-1157. Sano, H., Nakamura, A., Texada, M. J., Truman, J. W., Ishimoto, H., Kamikouchi, A., ... & Kojima, M. (2015). The nutrient-responsive hormone CCHamide-2 controls growth by regulating insulin-like peptides in the brain of Drosophila melanogaster. PLoS genetics, 11(5), e1005209. Scherkenbeck, J. and Zdobinsky, T., 2009. Insect neuropeptides: structures, chemical modifications and potential for insect control. Bioorganic & medicinal chemistry, 17(12), pp.4071-4084. Schoofs, L., De Loof, A., & Van Hiel, M. B. (2017). Neuropeptides as regulators of behavior in insects. Annual review of entomology, 62, 35-52. Toprak, U. (2020). The role of peptide hormones in insect lipid metabolism. Frontiers in Physiology, 11, 434. Veenstra, J. A. (2014). The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Frontiers in Physiology, 5, 454. Veenstra, J. A. (2019). Coleoptera genome and transcriptome sequences reveal numerous differences in neuropeptide signaling between species. PeerJ, 7, e7144. Wu, F., Deng, B., Xiao, N., Wang, T., Li, Y., Wang, R., ... & Zhou, C. (2020). A neuropeptide regulates fighting behavior in Drosophila melanogaster. Elife, 9, e54229. Wu, H. P., Wang, X. Y., Hu, J., Su, R. R., Lu, W., & Zheng, X. L. (2022). Identification of neuropeptides and neuropeptide receptor genes in Phauda flammans (Walker). Scientific Reports, 12(1), 1-13. Xu, G., Gu, G.X., Teng, Z.W., Wu, S.F., Huang, J., Song, Q.S., Ye, G.Y. and Fang, Q., 2016. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis. Scientific Reports, 6(1), pp.1-15. Yamanaka, N., Hua, Y. J., Roller, L., Spalovská-Valachová, I., Mizoguchi, A., Kataoka, H., & Tanaka, Y. (2010). Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis. Proceedings of the National Academy of Sciences, 107(5), 2060-2065. Yu, K., Xiong, S., Xu, G., Ye, X., Yao, H., Wang, F., ... & Ye, G. (2020). Identification of neuropeptides and their receptors in the ectoparasitoid, Habrobracon hebetor. Frontiers in Physiology, 11, 575655. Yu, K., Xiong, S., Xu, G., Ye, X., Yao, H., Wang, F., ... & Ye, G. (2020). Identification of neuropeptides and their receptors in the ectoparasitoid, Habrobracon hebetor. Frontiers in Physiology, 11, 575655. Zandawala, M., & Orchard, I. (2013). Post-feeding physiology in Rhodnius prolixus: The possible role of FGLamide-related allatostatins. General and Comparative Endocrinology, 194, 311-317. Zhang, Y. M., Ye, D. X., Liu, Y., Zhang, X. Y., Zhou, Y. L., Zhang, L., & Yang, X. L. (2023). Peptides, new tools for plant protection in eco-agriculture. Advanced Agrochem.