Green Synthesis of Iron Oxid Nanoparticles Using Cressa Cretica leaf Extract and Investigating its Antimicrobial Efficacy

Document Type : Research Paper

Authors

1 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran

2 Assistant Prof, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran

3 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Zabol University, Zabol, Iran

Abstract

In order to green synthesis of iron nanoparticles, the leaf extract of Cressa cretica L. was used as a reducing agent. In order to green synthesize iron oxide nanoparticles, the extract of Cressa cretica L. was used as a reducing agent. Within a few minutes of adding iron sulfate to leaf the extract of Cressa cretica L., iron oxide nanoparticles were formed. The first sign of the synthesis of nanoparticles was the change in the color of the solution from yellow to dark brown. The synthesized nanoparticles were analyzed by various techniques such as ultra-violet spectrophotometry, XRD, FT-IR, TEM. In the spectrum obtained from the UV-spectrophotometer, the peak appeared at 280 nm, which indicates the transfer of oxygen electrons to iron synthesized from Cressa. The XRD spectrum depicted the crystal structure of the synthesized iron oxide nanoparticles. The uniform spherical particles of the synthesized iron oxide nanoparticles with an average size of 21 nm were visible using TEM images. The FT-IR spectrum shows the presence of functional groups of plant chemicals that probably play a role in the formation and stabilization of nanoparticles. These results confirm the presence of flavonoid and phenolic compounds in leaf extract. These compounds can be responsible for the reduction of metal ions and the formation of nanoparticles. Synthetic iron oxide nanoparticles showed effective inhibition against Staphylococcus aureus, These results indicate the possible effective use of synthetic nanoparticles in the production of antibacterial drugs and various biological applications.

Keywords

Main Subjects


Abid, M. A., Kadhim, D. A., & Aziz, W. J. (2022). Iron oxide nanoparticle synthesis using trigonella and tomato extracts and their antibacterial activity. Materials Technology, 37(8), 547-554. Abo‐zeid, Y., & Williams, G. R. (2020). The potential anti‐infective applications of metal oxide nanoparticles, A systematic review. Wiley Interdisciplinary Reviews, Nanomedicine and Nanobiotechnology, 12(2), e1592. Al-Karagoly, H., Rhyaf, A., Naji, H., Albukhaty, S., AlMalki, F. A., Alyamani, A. A., Albaqami, J., & Aloufi, S. (2022). Green synthesis, characterization, cytotoxicity, and antimicrobial activity of iron oxide nanoparticles using Nigella sativa seed extract. Green Processing and Synthesis, 11(1), 254-265. Balasubramanian, S., Eyapaul, U., Bosco, A. J., & Kala, S. M. (2015). Green synthesis of silver nanoparticles using cressa cretica leaf extract and its antibacterial efficacy. International Journal of Advanced Chemical Science and Applications (IJACSA), 3(1), 65-71. Balasubramanian, S., Kala, S. M. J., Pushparaj, T. L., & Kumar, P. (2019). Biofabrication of gold nanoparticles using Cressa cretica leaf extract and evaluation of catalytic and antibacterial efficacy. Nano Biomedicine and Engineering, 11(1), 58-66. Barnes, R. J., Gast, C. J., Riba, O., Lehtovirta, L. E., Prosser, J. I., Dobson, P. J & Thompson, I. P. (2010). The Impact of zero-valent iron nanoparticles on a river water bacterial community. Journal of Hazardous Materials, 184 (1-3),73-80. Bauer A. W., Kirby W. M. M., Sherris J. C., & Truck M. (1966); Antibiotic susceptibility testing by standardized single disc method. American Journal of Clinical Pathology, 45, 493-496. Boxall A. B. A., Tiede K., & Chaudhry Q. (2007). Engineered nanomaterials in soils and water, how do they behave and could they pose a risk to human health. Nanomedicine, 2(6), 919-27. Cadenas, E. & Packer, L. (1996). Handbook of antioxidants. Marcel Dekker Inc. Chandran SP, Chaudhary M, Pasricha R, Ahmad A., & Sastry M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using aloevera plant extract. Biotechnology Progress. 22(2), 577-83. Ebrahimi, N., Rasoul-Amini, S., Ebrahiminezhad, A., Ghasemi, Y., Gholami, A., & Seradj, H. (2016). Comparative study on characteristics and cytotoxicity of bifunctional magnetic-silver nanostructures, synthesized using three different reducing agents. Acta Metallurgica Sinica (English Letters), 29(4), 326-334. Ebrahiminezhad, A., Taghizadeh, S., Ghasemi, Y., & Berenjian, A. (2018). Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Science of the Total Environment, 621, 1527-1532. Elgorban AM., Al-rahmah A.N., Rushdy S., Hirad A., Abdеl-fattah Mostafa A., & Hassan A. (2016). Antimicrobial activity and green synthesis of silver nanoparticles using trichoderma virid. Biotechnology and Biotechnological Equipment, 30(2), 299-304. Emrani, S., Zhiani, R., & Dafe Jafari, M. (2018). The biosynthesis of silver nanoparticles using plants of Glycyrrhiza glabra and mentha piperata and its antimicrobial effect on some bacterias that cause tooth decay. Journal of Rafsanjan University of Medical Sciences, 16 (10) ,953-968. (in Persian) Fan, D., Bao, C., Liu, X., Wu, D., Zhang, Y., Wang, H., Du, B., & Wei, Q. (2018). A novel label-free photoelectrochemical immunosensor based on NCQDs and Bi 2 S 3 co-sensitized hierarchical mesoporous SnO 2 microflowers for detection of NT-proBNP. Journal of Materials Chemistry B, 6(46), 7634-7642. Fawzi, F., Mahdi M. F., & Abaas, I. S. (2019). Isolation of astragalin from Cressa cretica cultivated in Iraq. Journal of Pharmaceutical Sciences and Research, 11(1), 185-90. Fazlzadeh, M., Tagizadeh, A., Entezari, A., & Khosravi, R. (2017). Green synthesis of ZnO nanoparticles and coating them on the activated carbon to investigate removal efficiency of hexavalent chromium. Journal of Occupational Medicine and Environmental Health, 3, 7-19. (in Persian) Feitz, A. J., Joo, S. H., Guan, J., Sun, Q., Sedlak, D. L., & Waite, T. D. (2005). Oxidative transformation of contaminants using colloidal zero-valent iron. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 265(1-3), 88-94. Ghassemi Dehkordi, N., Norouzi, M., & Safaei Aziz, A. (2012). Collection and Evaluation of the Traditional Applications of Some Plants of Jandagh. Journal of Islamic and Iranian Traditional Medicine, 3 (1), 105-112 Groiss, S., Selvaraj, R., Varadavenkatesan, T., & Vinayagam, R. (2017). Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. Journal of Molecular Structure, 1128, 572-578. Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagouda, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19(45), 8671-8677. Huang, L., Weng, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of iron nanoparticles by various tea extracts, comparative study of the reactivity. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 130, 295-301. Huang, L., Luo, F., Chen, Z., Megharaj, M., & Naidu, R. (2015). Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 137, 154-159. Hussein M. A. M., Baños F. G. D., Grinholc M., Dena A. S. A., El-Sherbiny I. M., & Megahed M. (2020). Exploring the physicochemical and antimicrobial properties of gold-chitosan hybrid nanoparticles composed of varying chitosan amounts. International Journal of Biological Macromolecules, 162, 1760–1769. Iconaru, S. L., Andronescu, E., Ciobanu, C. S., Prodan, A. M., Coustumer, P. L., & Predoi, D. (2012). Biocompatible magnetic iron oxide nanoparticles doped dextran thin films produced by spin coating deposition solution. Digest Journal of Nanomaterials & Biostructures (DJNB), 7(1). Iravani S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 10, 2638–2650. Jahangir M., & Nasernakhaei F. (2021). A review of medicinal properties of Alkali weed (Cressa cretica L.). Journal of Islamic and Iranian Traditional Medicine, 11 (4), 401-408. (in Persian) Jamzad, M., & Kamari Bidkorpeh, M. (2020). Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. Journal of nanostructure in Chemistry, 10(3), 193-201. Kafayati, M. E., Raheb, J., Torabi Angazi, M., Alizadeh, Sh., & Bardania, H. (2013). The effect of magnetic fe3o4 nanoparticles on the growth of genetically manipulated bacterium, pseudomonas aeruginosa (PTSOX4). Iranian Journal of Biotechnology, 11(1), 41. Kalaiarasi, S., & Yokeswari Nithya, P. (2019). Synthesis, characterization and electrochemical behaviour of metal oxide nanoparticles from Cressa Cretica whole plant. International Journal of Advanced Scientific Research and Management, 4, 105-109. Kalishwaralal, K., Deepak, V., Pandian, S. R. K., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B., & Gurunathan, S. (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and surfaces B, Biointerfaces, 77(2), 257-262. Kanagasubbulakshmi, S., & Kadirvelu K. (2017). Green synthesis of Iron Oxide nanoparticles using lagenaria siceraria and evaluation of its antimicrobial activity. Defence life science journal, 2, 422-427. Karpagavinayagam, P., & Vedhi, C. (2019). Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum, 160, 286-292. Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. Journal of Saudi Chemical Society, 18(4), 364-369. Kumar, B., Smita, K., Cumbal, L., Debut, A., Galeas, S. and Guerrero, V. H. (2016). Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf. Materials Chemistry and Physics, 179, 310-315. Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental science & technology, 42(13), 4927-4933. Machado, S., Pinto, S.L., Grosso, J.P., Nouws, H.P.A., Albergaria, J.T., & Delerue-Matos, C. (2013). Green production of zero-valent iron nanoparticles using tree leaf extracts. Science of the Total Environment, 445, 1-8. Mahdavi, M., Namvar, F., Ahmad, M. B., & Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18 (5), 5954-5964. Mirhosseini, M., & Firouzabadi, F. B. (2013). Antibacterial activity of zinc oxide nanoparticle suspensions on food‐borne pathogens. International Journal of Dairy Technology, 66 (2), 291-295. Mishra V., Sharma R., Jasuja N. D., & Gupta D. K. (2014). A review on green synthesis of nanoparticles and evaluation of antimicrobial. International Journal of Green and Herbal Chemistry, 3(1), 081-094. Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. (2018). Characterization techniques for nanoparticles, comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871-12934. Nasrollahzadeh, M., Maham, M., Rostami-Vartooni, A., Bagherzadeh, M., & Sajadi, S. M. (2015). Barberry fruit extract assisted insitu green synthesis of Cu nanoparticles supported on a reduced graphene oxide–Fe3O4 nanocomposite as a magnetically separable and reusable catalyst for the O-arylation of phenols with aryl halides under ligand-free conditions. RSC advances, 5(79), 64769-64780. Prakash, N., Sivakami, S., Elamaran, M., & Ingarsal, N. (2014). Synthesis and Invitro bacterial screening of 2-amino- 4-(2-naphthyl)-6-aryl-6H-1, 3-thiazines‖. International Journal of Advanced Chemical Science and Applications, 1(2), 21-24. Prasad, A. S. (2016). Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of Garlic Vine (Mansoa alliacea). Materials Science in Semiconductor Processing, 53, 79-83. Priyashree, S., Jha, S., & Pattanayak, S. P. (2010). A review on Cressa cretica Linn., A halophytic plant. Pharmacognosy Reviews. Jul; 4(8), 161-166. Rajendran, K., Karunagaran, V., Mahanty, B., & Sen, S. (2015). Biosynthesis of hematite nanoparticles and its cytotoxic effect on HepG2 cancer cells. International journal of biological macromolecules, 74, 376-381. Rehana, D., Mahendiran, D., Kumar, R. S., & Rahiman, A. K. (2017). Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomedicine & Pharmacotherapy, 89, 1067-1077. Rios, J. L., Recio, M. C., & Villar, A. (1988). Screening methods for natural products with antimicrobial activity, a review of the literature. Journal of ethnopharmacology, 23(2-3), 127-149. Salari, N., Karimi Maleh, H., & Asadi, M. (2019). Biosynthesis of gold nanoparticles by extract of aerial organs of Cumin (Cuminum cyminum L.). Cellular and Molecular Researches (Iranian Journal of Biology), 32(3), 280-291. (in Persian) Saod, W. M., Al-Janaby, M. S., Gayadh, E. W., Ramizy, A., & Hamid, L. L. (2024). Biogenic synthesis of iron oxide nanoparticles using Hibiscus sabdariffa extract, Potential for antibiotic development and antibacterial activity against multidrug-resistant bacteria. Current Research in Green and Sustainable Chemistry, 8, 100397. Sari, I. P., & Yulizar, Y. (2017). Green synthesis of magnetite (Fe3O4) nanoparticles using Graptophyllum pictum leaf aqueous extract. 2nd International Conference on Mining, Material and Metallurgical Engineering. 2017, April. IOP Publishing. 191(1), 1-5. Sayadi, M. H., Siami, M., Esmailpour, M., & Hajiani, M. (2017). The efficiency of biosynthesis silica nanoparticles at removal of heavy metals Cr and Cu from aqueous solutions. Journal of Birjand University of Medical Sciences, 24 (1), 36–49. (in Persian) Sellmyer. (2005). Advanced Magnetic Nanostructures. Springer. Senthil, M., & Ramesh, C. (2012). Biogenic synthesis of fe3o4 nanoparticles using tridax procumbens leaf extract and its antibacterial activity on pseudomonas aeruginosa. Digest Journal of Nanomaterials & Biostructures (DJNB), 7(4). Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., Jamalifar, H., & Nohi, A. A. (2007). Rapid synthesis of silver nanoparticles using cultureesupernatants of Enterobacteria, a novel biological approach. Process Biochemistry, 42, 919-923. Sunita, P., Jha, S., Pattanayak, S. P., & Mishra, S.K. (2012). Antimicrobial activity of a halophytic plant Cressa cretica L. Journal of Scientific Research, 4(1), 203-212. Taghva, A., & Entezari, M. (2017). Biosynthesis and characterization of silver nanoparticles using aqueous extract of Saffron corm and evaluation of their antibacterial and mutagenesis activity. Journal of Police Medicine, 6(1), 57-66. (in Persian) Taheri, R., Poor Seyedi, Sh., & Lohrasbi nejhad, A. (2017). Green synthesis of Fe3O4 magnetic iron oxide nanoparticles using the leaf extract of Melissa officinalis L. Second National Conference on Nanostructures, Science and Nanotechnology, 25 February 2016. Islamic Azad University, Kashan branch. Kashan, Iran. (in Persian) Taufik, A., & Saleh, R. (2017). Organic dyes removal using magnetic Fe3O4− nanographene platelets composite materials. Physica B, Condensed Matter, 526, 166-171. Tavosi, F., Ghafarzadegan, R., Mirshokraei, S., & Hajiaghaee, R. (2018). Green synthesis of iron nano particles using Mentha longifolia L. Extract. Journal of Medicinal Plants, 2(66), 135-44. (in Persian) Thirunavukkarasu, P., Ramanathan, T., Manigandan, V., Dinesh, P., Vasanthkumar, A., & Kathiresan, K. (2000). Antimicrobial effect of costal sand dune plant of Cressa cretica. Diamond, 9(4), 355-363. torabi zarchi, M., & Mirhosseini, M. (2017). Investigation of Combination Effect of Magnesium Oxide and Iron Oxide Nanoparticles on the Growth And Morphology of the Bacteria Staphylococcus Aureus and Escherichia Coli in Juice. Journal of Shahid Sadoughi University of Medical Sciences, 24(11), 924-937. Venkateswarlu, S., Kumar, B. N., Prathima, B., SubbaRao, Y., & Jyothi, N.V.V. (2019). A novel green synthesis of Fe3O4 magnetic nanorods using Punica Granatum rind extract and its application for removal of Pb (II) from aqueous environment. Arabian Journal of Chemistry, 12(4), 588-596. Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of the total environment, 466, 210-213. Weng, X., Huang, L., Chen, Z., Megharaj, M., & Naidu, R. (2013). Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Industrial Crops and Products, 51, 342-347. Wu, W., He, Q., & Jiang, C. (2008). Magnetic iron oxide nanoparticles, synthesis and surface functionalization strategies. Nanoscale research letters, 3(11), 397-415.