Proteomic Analysis Of Root & Leaf of rice under salt stress

Document Type : Research Paper

Authors

Abstract

Rice is an excellent model cereal for molecular biology and genetics research. Salinity is a major factor limiting rice production world wide. The analysis of stress-responsiveness in plants is an important route to the discovery of genes conferring stress tolerance and their use in breeding programs. To further understand the mechanism of plant response to salinity we employed a proteomic approach to profile the protein changes of rice 3th leaf and root under salt stress. Plants were grown in Yoshida nutrient solution and salt‏ stress imposed after 25 days. Plants were treated by 100¬‏mM NaCl for 10. After that 3th leaves and total root were collected from control and salt stressed plants. The Na+ and K+ content of leaves/roots and several yield components changed significantly in response to short-term salt stress and their proteome patterns were analyzed using 2-DE in triplicates. The expression pattern of proteins significantly changed in all leaves/roots in response to stress. More than 488 and 345 protein were detected repeatedly in root and leaf 2D‏gels respectively by software package. 107‏ proteins in root and 86 proteins in leaf of two genotypes showed significant response to stress. 3 protein in leaf gels and 2 protein in root gels were selected and identified by ESI-Q-TOF. The most important were Ferritin, Rubisco activase and ascorbat¬peroxidase in leaf and Peroxidase and Ascorbat¬peroxidase in root. All of them were enzyme and involved in detoxification and removal of reactive oxygen species (peroxidase, ascorbat¬peroxidase) Iron homeostasis (ferritin) or activation of other enzymes (rubisco¬activase).

Keywords

Main Subjects