Identification, functional prediction, and verification of key lncRNAs involved in potato (Solanum tuberosum L.) tuberization under nitrogen deficiency stress

Document Type : Research Paper

Authors

1 Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University

2 Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.

3 Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

4 Department of Agricultural Biotechnology, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran

10.30473/cb.2025.72513.1985

Abstract

Nitrogen (N) is one of the most important nutrients needed for the growth and development of potato (Solanum tuberosum L.). In the course of evolution, long non-coding RNA molecules (lncRNAs) have played a role in causing significant changes in plant’s responses to abiotic stresses. Given the limited information available on the mechanisms of action and the role of such important regulatory elements during potato tuber developmental stages, this study was conducted to identify and investigate the expression and function of lncRNAs, as well as their target genes, in response to nitrogen treatment. The results of the present study revealed that a total of 211 differentially expressed lncRNA molecules were detected under nitrogen treatment. Of these, four intergenic lncRNA sequences were differentially expressed under nitrogen treatment, and their target genes were associated with ion homeostasis, signal transduction, and protein degradation. The metabolic pathways most frequently associated with the target genes involved the biosynthesis of secondary metabolites, fatty acid metabolism, and fatty acid degradation. This study identified lncRNAs in potatoes under nitrogen treatment for the first time, marking a significant step towards understanding the function of lncRNA in plant’s responses to nitrogen. Identifying the location and function of these lncRNAs, along with the activity of differentially expressed genes, will provide valuable insights into the mechanisms underlying the plant's response to nitrogen.

Keywords

Main Subjects


Birch, P. R., Bryan, G., Fenton, B., Gilroy, E. M., Hein, I., Jones, J. T., Prashar, A., Taylor, M. A., Torrance, L., & Toth, L. K. (2012). Crops that feed the world 8: potato: are the trends of increased global production sustainable? Food Security, 4, 477-508. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. Chen, M., Wang, C., Bao, H., Chen, H., & Wang, Y. (2016). Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency. Molecular Genetics and Genomics, 291, 1663-1680. Curci, P. L., Aiese Cigliano, R., Zuluaga, D. L., Janni, M., Sanseverino, W., & Sonnante, G. (2017). Transcriptomic response of durum wheat to nitrogen starvation. Scientific Reports, 7(1), 1176. Fukuda, M., Nishida, S., Kakei, Y., Shimada, Y., & Fujiwara, T. (2019). Genome-wide analysis of long intergenic noncoding RNAs responding to low-nutrient conditions in Arabidopsis thaliana: possible involvement of trans-acting siRNA3 in response to low nitrogen. Plant and Cell Physiology, 60(9), 1961-1973. Gálvez, J. H., Tai, H. H., Lagüe, M., Zebarth, B. J., & Strömvik, M. V. (2016). The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs. Scientific Reports, 6(1), 26090. Gong, L., Zhang, H., Gan, X., Zhang, L., Chen, Y., Nie, F., Shi, L., Li, M., Guo, Z., Zhang, G., & Song, Y. (2015). Transcriptome profiling of the potato (Solanum tuberosum L.) plant under drought stress and water-stimulus conditions. PLoS One, 10(5), e0128041. Hawkesford, M. J., & Griffiths, S. (2019). Exploiting genetic variation in nitrogen use efficiency for cereal crop improvement. Current Opinion in Plant Biology, 49, 35-42. Hirose, T., Mishima, Y., & Tomari, Y. (2014). Elements and machinery of non‐coding RNA s: toward their taxonomy. EMBO Reports, 15(5), 489-507. Jha, U. C., Nayyar, H., Jha, R., Khurshid, M., Zhou, M., Mantri, N., & Siddique, K. H. (2020). Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation. BMC Plant Biology, 20(1), 1-20. Jin, J., Lu, P., Xu, Y., Li, Z., Yu, S., Liu, J., Wang, H., Chua, N. H., & Cao, P. (2021). PLncDB V2. 0: a comprehensive encyclopedia of plant long noncoding RNAs. Nucleic Acids Research, 49(D1), D1489-D1495. Kang, Y. J., Yang, D.-C., Kong, L., Hou, M., Meng, Y. Q., Wei, L., & Gao, G. (2017). CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Research, 45(W1), W12-W16. Konishi, M., & Yanagisawa, S. (2013). Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nature Communications, 4(1), 1617. Li, J., Ma, W., Zeng, P., Wang, J., Geng, B., Yang, J., & Cui, Q. (2015). LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Briefings in Bioinformatics, 16(5), 806-812. Li, X. Q., Sveshnikov, D., Zebarth, B. J., Tai, H., De Koeyer, D., Millard, P., Haroon, M., & Singh, M. (2010). Detection of nitrogen sufficiency in potato plants using gene expression markers. American Journal of Potato Research, 87, 50-59. Long, C. M., Snapp, S. S., Douches, D. S., & Chase, R. W. (2004). Tuber yield, storability, and quality of Michigan cultivars in response to nitrogen management and seedpiece spacing. American Journal of Potato Research, 81, 347-357. Lowe, T. M., & Chan, P. P. (2016). tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 44(W1), W54-W57. Luo, S., Tai, H., Zebarth, B., Li, X. Q., Millard, P., De Koeyer, D., & Xiong, X. (2011). Sample collection protocol effects on quantification of gene expression in potato leaf tissue. Plant Molecular Biology Reporter, 29, 369-378. Lv, Y., Liang, Z., Ge, M., Qi, W., Zhang, T., Lin, F., Peng, Z., & Zhao, H. (2016). Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.). BMC Genomics, 17(1), 1-15. Ma, L., Bajic, V. B., & Zhang, Z. (2013). On the classification of long non-coding RNAs. RNA Biology, 10(6), 924-933. Navarro, C., Abelenda, J. A., Cruz-Oró, E., Cuéllar, C. A., Tamaki, S., Silva, J., Shimamoto, K., & Prat, S. (2011). Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature, 478(7367), 119-122. Negri, T. d. C., Alves, W. A. L., Bugatti, P. H., Saito, P. T. M., Domingues, D. S., & Paschoal, A. R. (2019). Pattern recognition analysis on long noncoding RNAs: a tool for prediction in plants. Briefings in Bioinformatics, 20(2), 682-689. Paytuví Gallart, A., Hermoso Pulido, A., Anzar Martínez de Lagrán, I., Sanseverino, W., & Aiese Cigliano, R. (2016). GREENC: a Wiki-based database of plant lncRNAs. Nucleic Acids Research, 44(D1), D1161-D1166. Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290-295. Quek, X. C., Thomson, D. W., Maag, J. L., Bartonicek, N., Signal, B., Clark, M. B., Gloss, B. S., & Dinger, M. E. (2015). lncRNAdb v2. 0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Research, 43(D1), D168-D173. Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841-842. Sanchita Trivedi, P.K., & Asif, M.H. (2020). Updates on plant long non-coding RNAs (lncRNAs): the regulatory components. Plant Cell, Tissue and Organ Culture (PCTOC), 140, 259-269. Shelp, B. J., Bown, A. W., & McLean, M. D. (1999). Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science, 4(11), 446-452. Shin, S. Y., Jeong, J. S., Lim, J. Y., Kim, T., Park, J. H., Kim, J. K., & Shin, C. (2018). Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. BMC Genomics, 19, 1-20. Simons, M., Saha, R., Guillard, L., Clément, G., Armengaud, P., Cañas, R., Maranas, C. D., Lea, P. J., & Hirel, B. (2014). Nitrogen-use efficiency in maize (Zea mays L.): from ‘omics’ studies to metabolic modelling. Journal of Experimental Botany, 65(19), 5657-5671. Simopoulos, C. M., Weretilnyk, E. A., & Golding, G. B. (2018). Prediction of plant lncRNA by ensemble machine learning classifiers. BMC Genomics, 19, 1-11. Szcześniak, M.W., Bryzghalov, O., Ciomborowska-Basheer, J., & Makałowska, I. (2019). CANTATAdb 2.0: expanding the collection of plant long noncoding RNAs. Plant Long Non-Coding RNAs: Methods and Protocols, 415-429. Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S., Bork, P., Jensen, L. J., & Mering, C. V. (2023). The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), D638-D646. Waseem, M., Liu, Y., & Xia, R. (2020). Long non-coding RNAs, the dark matter: an emerging regulatory component in plants. International Journal of Molecular Sciences, 22(1), 86. Westermann, D.T. (2005). Nutritional requirements of potatoes. American journal of Potato Research, 82, 301-307. Wu, H., Yang, L., & Chen, L. L. (2017). The diversity of long noncoding RNAs and their generation. Trends in Genetics, 33(8), 540-552. Wucher, V., Legeai, F., Hédan, B., Rizk, G., Lagoutte, L., Leeb, T., Jagannathan, V., Cadieu, E., David, A., Lohi, H., Cirera, S., Fredholm, M., Botherel, N., Peegwater, P. A. J., Béguec, C. L., Fieten, H., Johnson, J., Alföldi, J., André, C., Lindblad-Toh, K., Hitte, C., & Derrien, T. (2017). FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Research, 45(8), e57-e57. Zebarth, B., Rees, H., Tremblay, N., Fournier, P., & Leblon, B. (2002). Mapping spatial variation in potato nitrogen status using the N Sensor. Paper presented at the XXVI International Horticultural Congress: Toward Ecologically Sound Fertilization Strategies for Field Vegetable Production. ISHS Acta Horticulturae, 627. Zebarth, B., & Rosen, C. (2007). Research perspective on nitrogen BMP development for potato. American Journal of Potato Research, 84, 3-18. Zebarth, B., Tai, G., Tarn, R. D., De Jong, H., & Milburn, P. (2004). Nitrogen use efficiency characteristics of commercial potato cultivars. Canadian Journal of Plant Science, 84(2), 589-598. Zebarth, B. J., Tai, H., Luo, S., Millard, P., De Koeyer, D., Li, X.-Q., & Xiong, X. (2011). Differential gene expression as an indicator of nitrogen sufficiency in field-grown potato plants. Plant and Soil, 345, 387-400.