In collaboration with Payame Noor University and Iranian Biotechnology Society

Document Type : Research Paper

Authors

Abstract

Fusarium head blight (FHB) is a disease that causes major economic losses in wheat and other cereal crops production worldwide. Contamination of food with the trichothecene mycotoxin deoxynivalenol (DON) produced by Fusarium graminearum is a major health concern for humans and animals because trichothecenes are potent cytotoxins of eukaryotic cells. Trichothecene mycotoxins inhibit translation by targeting ribosomal protein L3 at the peptidyl transferase center. In this study, we modified a Tomato (Lycopersicon esculentum) cDNA encoding the ribosomal protein RPL3 so that amino acid residue 258 is changed from tryptophan to cysteine and amino acid residue 259 is change from histidine to tyrosine. All version of the tomato RPL3 were introduced to DON-sensitive pdr5 and ayt1 mutant strain Saccharomyces cerevisiae. When transgenic yeast were compared for growth in the presence of DON, a difference in growth rate and survival was observed among those yeasts expressing the modified versions of the tomato RPL3 genes, compared to those expressing the wild-type yeast RPL3 gene. These results can create a new field in developing FHB resistance varieties of wheat through genetic manipulation.

Keywords

Main Subjects