In collaboration with Payame Noor University and Iranian Biotechnology Society

Document Type : Research Paper

Authors

1 Department of Plant Breeding and Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.

3 Associate Professor, Department of Plant Breeding, Karaj Branch, Islamic Azad University, Karaj, Iran.

Abstract

Metal tolerance proteins (MTP) are plant membrane divalent cation transporters, which plays an important role during plant growth and development. They involve in minerals uptake and provide resistance for plants in polluted soil by heavy metal. However, information about MTPs proteins in Fabceace family are scarcely known. Therefore, in this study we provided an extensive evaluation of MTP genes in three important members of this family including: Glycine max, Medicago truncatula and Phaseolus vulgaris by providing phylogenetic assessments, chromosomal distributions, gene structures and expression in different tissue. According to the results 14, 12 and 23 MTP genes respectively were found in M. truncatula, P. vulgaris and G. max. 13 duplicated MTP genes in G. max were found meanwhile we did not find any duplication in the MTP genes of M. truncatula and P. vulgaris. All studied MTPs were classified into three major cation diffusion facilitator (CDFs) groups; Mn-CDFs, Zn-CDFs, and Fe/Zn-CDFs. In silico subcellular location results revealed that these proteins have the maximum activity in the vacuole in all three plants, and a small number are located in the cell wall and nucleus. According to gene structure and protein motifs of studied MTPs, they are highly conserved but their expression measurement showed that each one of them have different levels of expression during growth stage. It confirms their importance for plants during growth and development.

Keywords

Main Subjects

Andresen, E., Peiter, E., & Küpper, H. (2018). Trace metal metabolism in plants. Journal of Experimental Botany, 69(5), 909-954. Arab, M., Najafi Zarrini, H., Nematzadeh, G., & Hashemi-petroudi, S. H. (2021). In silico analysis of CBL gene family in the halophyte plant Aeluropus littoralis and the model plant Arabidopsis thaliana. Crop Biotechnology, 10(32), 17-35. Arrivault, S., Senger, T., & Krämer, U. (2006). The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. The Plant Journal, 46(5), 861-879. Chalekaei, M., Dehestani, A., Abbasi, A., Hashemi-petroudi, S. (2021). Identification and evaluation of relation between regulatory elements of the promoter region of DLV gene family and gene expression in Aeluropus littoralis. Crop Biotechnology, 10(32), 95-109. doi: 10.30473/cb.2021.58873.1836 Chou, K. C., & Shen, H. B. (2010). Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PloS One, 5(6), e11335. Dai, X., Zhuang, Z., Boschiero, C., Dong, Y., & Zhao, P. X. (2021). LegumeIP V3: from models to crops-an integrative gene discovery platform for translational genomics in legumes. Nucleic Acids Research, 49(D1), D1472-D1479. Erbasol, I., Bozdag, G. O., Koc, A., Pedas, P., & Karakaya, H. C. (2013). Characterization of two genes encoding metal tolerance proteins from Beta vulgaris subspecies maritima that confers manganese tolerance in yeast. Biometals, 26(5), 795-804. Eroglu, S., Giehl, R. F., Meier, B., Takahashi, M., Terada, Y., Ignatyev, K.,... & Von Wiren, N. (2017). Metal tolerance protein 8 mediates manganese homeostasis and iron reallocation during seed development and germination. Plant Physiology, 174(3), 1633-1647. Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: interactive sequence similarity searching. Nucleic Acids Research, 39(suppl_2), W29-W37. Gao, Y., Yang, F., Liu, J., Xie, W., Zhang, L., Chen, Z.,... & Yao, Y. (2020). Genome-wide identification of metal tolerance protein genes in Populus trichocarpa and their roles in response to various heavy metal stresses. International Journal of Molecular Sciences, 21(5), 1680. Garg, V. K., Avashthi, H., Tiwari, A., Jain, P. A., Ramkete, P. W., Kayastha, A. M., & Singh, V. K. (2016). MFPPI–multi FASTA ProtParam interface. Bioinformation, 12(2), 74. Gu, D., Zhou, X., Ma, Y., Xu, E., Yu, Y., Liu, Y.,... & Zhang, W. (2021). Expression of a Brassica napus metal transport protein (BnMTP3) in Arabidopsis thaliana confers tolerance to Zn and Mn. Plant Science, 304, 110754. Hall, J., Soole, K., & Bentham, R. (2011). Hydrocarbon phytoremediation in the family Fabacea-a review. International Journal of Phytoremediation, 13(4), 317-332. Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., & Gao, G. (2015). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics,31(8),1296-1297. Kumar S, Stecher G, Tamura K (2016) MEGA7 : Molecular Evolutionary Genetics Analysis Version 7 . 0 for Bigger Datasets Brief communication. Mol. Biol. Evol., 33, 1870-1874. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7),1870-1874. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H.,... & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y.,... & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325-327. Liu, J., Gao, Y., Tang, Y., Wang, D., Chen, X., Yao, Y., & Guo, Y. (2019). Genome-wide identification, comprehensive gene feature, evolution, and expression analysis of plant metal tolerance proteins in tobacco under heavy metal toxicity. Frontiers in Genetics, 10, 345. Menguer, P. K., Farthing, E., Peaston, K. A., Ricachenevsky, F. K., Fett, J. P., & Williams, L. E. (2013). Functional analysis of the rice vacuolar zinc transporter OsMTP1. Journal of Experimental Botany, 64(10),2871-2883. Migocka, M., Małas, K., Maciaszczyk-Dziubinska, E., Posyniak, E., Migdal, I., & Szczech, P. (2018). Cucumber Golgi protein CsMTP5 forms a Zn-transporting heterodimer with high molecular mass protein CsMTP12. Plant Science, 277, 196-206. Migocka, M., Małas, K., Maciaszczyk‐Dziubinska, E., Papierniak, A., Posyniak, E., & Garbiec, A. (2018). Retracted: Cucumber metal tolerance protein 7 (CsMTP7) is involved in the accumulation of Fe in mitochondria under Fe excess. The Plant Journal, 95(6), 988-1003. Migocka, M., Papierniak, A., Kosieradzka, A., Posyniak, E., Maciaszczyk‐Dziubinska, E., Biskup, R.,... & Marchewka, T. (2015). Retracted: Cucumber metal tolerance protein Cs MTP 9 is a plasma membrane H+‐coupled antiporter involved in the Mn2+ and Cd2+ efflux from root cells. The Plant Journal, 84(6), 1045-1058. Migocka, M., Papierniak, A., Maciaszczyk-Dziubińska, E., Poździk, P., Posyniak, E., Garbiec, A., & Filleur, S. (2014). Retracted: Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis Thaliana. Mirzaei, K., Bahramnejad, B., & Fatemi, S. (2020). Genome-wide identification and characterization of the bZIP gene family in potato (Solanum tuberosum). Plant Gene, 24, 100257. Mirzaei, K., Bahramnejad, B., Shamsifard, M. H., & Zamani, W. (2014). In silico identification, phylogenetic and bioinformatic analysis of argonaute genes in plants. International Journal of Genomics, 2014. Mohammadian Roshan, N. (2020). Phylogenetic, structure and expression analysis of growth regulatory factors (GRF) genes in wheat (Triticum aestivum L.) using in silico methods. Crop Biotechnology, 10(31), 45-60. Montanini, B., Blaudez, D., Jeandroz, S., Sanders, D., & Chalot, M. (2007). Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics, 8(1), 1-16. Morais, S. (2012). Garcia e Costa F, Pereira M. Environmental Health-Emerging Issues and Practice. Reviewed Edition. London: IntechOpen, 227-246. Peiter, E., Montanini, B., Gobert, A., Pedas, P., Husted, S., Maathuis, F. J.,... & Sanders, D. (2007). A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proceedings of the National Academy of Sciences, 104(20), 8532-8537. Ricachenevsky, F. K., Menguer, P. K., Sperotto, R. A., Williams, L. E., & Fett, J. P. (2013). Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Frontiers in Plant Science, 4, 144. Seregin, I. V., & Kozhevnikova, A. D. (2021). Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation. Photosynthesis Research, 150(1), 51-96. Shirazi, Z., Abedi, A., Kordrostami, M., Burritt, D. J., & Hossain, M. A. (2019). Genome-wide identification and characterization of the metal tolerance protein (MTP) family in grape (Vitis vinifera L.). 3 Biotech, 9(5), 1-17. Takemoto, Y., Tsunemitsu, Y., Fujii-Kashino, M., Mitani-Ueno, N., Yamaji, N., Ma, J. F.,... & Ueno, D. (2017). The tonoplast-localized transporter MTP8. 2 contributes to manganese detoxification in the shoots and roots of Oryza sativa L. Plant and Cell Physiology, 58(9), 1573-1582. Yang, L., Ji, J., Harris-Shultz, K. R., Wang, H., Wang, H., Abd-Allah, E. F.,... & Hu, X. (2016). The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress. Frontiers in Plant Science, 7, 190. Yuan, L., Yang, S., Liu, B., Zhang, M., & Wu, K. (2012). Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant cell reports, 31(1), 67-79. Zhang, M., & Liu, B. (2017). Identification of a rice metal tolerance protein OsMTP11 as a manganese transporter. PloS One, 12(4), e0174987. Zhang, Z., Fu, D., Sun, Z., Ju, C., Miao, C., Wang, Z.,... & Wang, C. (2021). Tonoplast-associated calcium signaling regulates manganese homeostasis in Arabidopsis. Molecular Plant, 14(5), 805-819.