Identification of miRNAs and their target genes in Trachyspermum ammi

Document Type : Research Paper

Authors

1 M. Sc. Student of Plant Breeding, Production Engineering and Plant Genetic Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Assistant Professor, Plant Production and Genetics Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Associate Professor, Plant Production and Genetics Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

MicroRNAs are main groups of small, non-coding molecules that regulate gene expression in animals and plants. Ajwain (Trachyspermum ammi) is plants known for their medicinal properties. To date, no miRNAs have beenidentified in T. ammi. Therefore, in the present study, a computational approach based on homology search through Blastx algorithm against mirbase database was used to predict miRNA and their target genes. The parameters of GC percentage, minimum folding free energy, minimum folding free energy index and secondary structure were determined and the sequences of miRNA precursor candidate were identified. In order to investigate the expression of selected genes using Real time PCR, an experiment was performed in a completely randomized design on the ajwain Arak ecotype at three levels of 0, 12 and 24 hours after methyl jasmonate application. A total of nine miRNAs including miR156, miR160, miR166, miR168, miR171, miR172, miR396, miR477 and miR827 were identified. It was estimated that they regulate 931 of T. ammi genes, which belong to several gene families with different biological functions. Jasmonate and its derivatives are plant signaling molecules. Therefore, miR160 and miR166 expression was evaluated by Real time PCR technique. The results showed that pri-miR160 and pri-miR166 was up-regulated in response to methyl jasmonate treatment, that indicated pri-miR160 and pri-miR166 were associated with hormone transfer.

Keywords

Main Subjects


Akbarinia A, Sefidkon F, Ghalavand A, Tahmasebi Sarvestani Z and Sharifi Ashorabadi A (2005) A study on chemical composition of Ajowan (Trachyspermum ammi) essential oil produced in Qazvin. Journal of Inflammatory Diseases. 9(3): 22-25 Akbarinia, A., Sefidkon, F., Ghalavand, A., Tahmasbi, S. Z., & Sharifi, A. E. (2005). A study on chemical composition of Ajowan (Trachyspermum ammi) essential oil produced in Qazvin. J. Qazvin Univ. Med. Sci 9: 22-26. (In Persian). Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom. Axtell, M. J., Snyder, J. A., & Bartel, D. P. (2007). Common functions for diverse small RNAs of land plants. The Plant Cell, 19(6), 1750-1769. Axtell, M. J., Westholm, J. O., & Lai, E. C. (2011). Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biology, 12(4), 1-13. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15),2114-2120. Bonnet, E., Wuyts, J., Rouzé, P., & Van de Peer, Y. (2004). Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics, 20(17), 2911-2917. Dai, X., Lu, Q., Wang, J., Wang, L., Xiang, F., & Liu, Z. (2021). MiR160 and its target genes ARF10, ARF16 and ARF17 modulate hypocotyl elongation in a light, BRZ, or PAC-dependent manner in Arabidopsis: miR160 promotes hypocotyl elongation. Plant Science, 303, 110686. Dai, X., & Zhao, P. X. (2011). psRNATarget: a plant small RNA target analysis server. Nucleic acids research, 39(suppl_2), W155-W159. Dhandapani, V., Ramchiary, N., Paul, P., Kim, J., Choi, S. H., Lee, J., ... & Lim, Y. P. (2011). Identification of potential microRNAs and their targets in Brassica rapa L. Molecules and Cells, 32(1), 21-37. Fan, R., Li, Y., Li, C., & Zhang, Y. (2015). Differential microRNA analysis of glandular trichomes and young leaves in Xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis. PLoS One, 10(9), e0139002. François, L., Verdenaud, M., Fu, X., Ruleman, D., Dubois, A., Vandenbussche, M., ... & Bendahmane, M. (2018). A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses. Scientific Reports, 8(1), 1-11. Guigon, I., Legrand, S., Berthelot, J. F., Bini, S., Lanselle, D., Benmounah, M., & Touzet, H. (2019). miRkwood: a tool for the reliable identification of microRNAs in plant genomes. BMC Genomics, 20(1), 1-9. Gutierrez, L., Mongelard, G., Floková, K., Păcurar, D. I., Novák, O., Staswick, P., ... & Bellini, C. (2012). Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. The Plant Cell, 24(6), 2515-2527. Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., ... & Regev, A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols, 8(8), 1494-1512. Haghiroalsadat, B. F., Vahidi, A. R., Azimzadeh, M., Kalantar, S. M., Bernard, F., Hokm, E. F., (2012) Chemical Assessment of Active Ingredients, Anti-oxidant and Anti-microbial Effects of Trachyspermum Copticum's Seeds harvested in Yazd Province. 21th International Congress of Microbiology of Iran, 197-206. Hedge, I.C., Lamond JM (1987) Trachyspermum. FloraIranica 162: 336-8. Hewezi, T., Piya, S., Qi, M., Balasubramaniam, M., Rice, J. H., & Baum, T. J. (2016). Arabidopsis miR827 mediates post‐transcriptional gene silencing of its ubiquitin E3 ligase target gene in the syncytium of the cyst nematode Heterodera schachtii to enhance susceptibility. The Plant Journal, 88(2), 179-192. Jannesar, M., Seyedi, S. M., Moazzam Jazi, M., Niknam, V., Ebrahimzadeh, H., & Botanga, C. (2020). A genome-wide identification, characterization and functional analysis of salt-related long non-coding RNAs in non-model plant Pistacia vera L. using transcriptome high throughput sequencing. Scientific Reports, 10(1), 1-23. Ko, J. H., Prassinos, C., & Han, K. H. (2006). Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class III HD‐Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166). New Phytologist, 169(3), 469-478. Li, L., Xu, J., Yang, D., Tan, X., & Wang, H. (2010). Computational approaches for microRNA studies: a review. Mammalian Genome, 21(1), 1-12. Li, P., Tian, Z., Zhang, Q., Zhang, Y., Wang, M., Fang, X., ... & Cai, X. (2019). MicroRNAome Profile of Euphorbia kansui in Response to Methyl Jasmonate. International Journal of Molecular Sciences, 20(6), 1267. Li, S., Li, L., Jiang, Y., Wu, J., Sun, H., Zhao, M.,... & Zhang, M. (2020). SQUAMOSA Promoter Binding Protein-Like (SPL) Gene Family: Transcriptome-Wide Identification, Phylogenetic Relationship, Expression Patterns and Network Interaction Analysis in Panax ginseng CA Meyer. Plants, 9(3), 354. Li, X., Xie, X., Li, J., Cui, Y., Hou, Y., Zhai, L., ... & Bian, S. (2017). Conservation and diversification of the miR166 family in soybean and potential roles of newly identified miR166s. BMC Plant Biology, 17(1), 1-18. Mageroy, M. H., Wilkinson, S. W., Tengs, T., Cross, H., Almvik, M., Pétriacq, P., ... & Krokene, P. (2020). Molecular underpinnings of methyl jasmonate‐induced resistance in Norway spruce. Plant, Cell & Environment, 43(8), 1827-1843. Mallory, A. C., Bartel, D. P., & Bartel, B. (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. The Plant Cell, 17(5), 1360-1375. Mir Drikvand, R., Sohrabi, S. S., ُSohrabi, S. M., & Samiei, K. (2019). Identification and characterization of conserved miRNAs of Coriandrum sativum L. using next-generation sequencing data. Crop Biotechnology, 9(25), 59-74. Mirzahosseini, S. M., Noori, S. A. S., Amanzadeh, Y., Javid, M. G., & Howyzeh, M.S. (2017). Phytochemical assessment of some native ajowan (Therachyspermum ammi L.) ecotypes in Iran. Industrial Crops and Products, 105, 142-147. Chavez Montes, R. A., Rosas-Cárdenas, D. F. F., De Paoli, E., Accerbi, M., Rymarquis, L. A., Mahalingam, G., ... & De Folter, S. (2014). Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nature Communications, 5(1), 1-15. Ncube, B., & Van Staden, J. (2015). Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit. Molecules, 20(7), 12698-12731. Patanun, O., Lertpanyasampatha, M., Sojikul, P., Viboonjun, U., & Narangajavana, J. (2013). Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.). Molecular Biotechnology, 53(3), 257-269. Reimand, J., Arak, T., Adler, P., Kolberg, L., Reisberg, S., Peterson, H., & Vilo, J. (2016). g: Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Research, 44(W1), W83-W89. Roy, S., Chakraborty, A.P., & Chakraborty, R. (2021). Understanding the potential of root microbiome influencing salt‐tolerance in plants and mechanisms involved at the transcriptional and translational level. Physiologia Plantarum, 173(4), 1657-1681. Saifi, M., Nasrullah, N., Ahmad, M. M., Ali, A., Khan, J. A., & Abdin, M. Z. (2015). In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana. Plant Physiology and Biochemistry, 94, 57-64. Singh, N., Srivastava, S., Shasany, A. K., & Sharma, A. (2016). Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp. Computational Biology and Chemistry, 64, 154-162. Soltani Howyzeh, M., Sadat-Noori, S.A., Shariati, J. (2018) Essential oil profiling of Ajowan (Trachyspermum ammi) industrial medicinal plant. Ind Crops Prod, 119, 255-259. Vashisht, I., Mishra, P., Pal, T., Chanumolu, S., Singh, T.R., & Chauhan, R.S. (2015). Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa. Planta, 241(5), 1255-1268. Wang, M., Wang, Q., & Wang, B. (2012). Identification and characterization of microRNAs in Asiatic cotton (Gossypium arboreum L.). PLoS One, 7(4), e33696. Wilkinson, S. W., Vivian-Smith, A., Krokene, P., & Mageroy, M. H. (2021). The microRNA response associated with methyl jasmonate-induced resistance in Norway spruce bark. Plant Gene, 27, 100301. Xing, S., Salinas, M., Höhmann, S., Berndtgen, R., & Huijser, P. (2010). miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. The Plant Cell, 22(12), 3935-3950. Yao, D., Zhang, Z., Chen, Y., Lin, Y., Xu, X., & Lai, Z. (2021). Transcriptome Analysis Reveals Differentially Expressed Genes That Regulate Biosynthesis of the Active Compounds with Methyl Jasmonate in Rosemary Suspension Cells. Genes, 13(1), 67. Yu, Z. X., Wang, L. J., Zhao, B., Shan, C.M., Zhang, Y.H., Chen, D.F., & Chen, X.Y. (2015). Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Molecular Plant, 8(1), 98-110. Zarshenas, M. M., Samani, S. M., Petramfar, P., & Moein, M. (2014). Analysis of the essential oil components from different Carum copticum L. samples from Iran. Pharmacognosy Research, 6(1), 62. Zhang, B. (2015). MicroRNA: a new target for improving plant tolerance to abiotic stress. Journal of experimental botany, 66(7), 1749-1761. Zhang, B., Pan, X., Cannon, C. H., Cobb, G. P., & Anderson, T. A. (2006). Conservation and divergence of plant microRNA genes. The Plant Journal, 46(2), 243-259. Zhang, B. H., Pan, X. P., Cox, S. B., Cobb, G. P., & Anderson, T. A. (2006). Evidence that miRNAs are different from other RNAs. Cellular and Molecular Life Sciences CMLS, 63(2), 246-254. Zhang, X., Zou, Z., Zhang, J., Zhang, Y., Han, Q., Hu, T., ... & Ye, Z. (2011). Over‐expression of sly‐miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS letters, 585(2), 435-439. Zhang, Y., Schwarz, S., Saedler, H., & Huijser, P. (2007). SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Molecular Biology, 63(3), 429-439.