Abrahám, E. Rigó, G. Székely, G. Nagy, R. Koncz, C. et al. (2003). Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol, 51 (3): 363-372.
Ahmad, P. Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants - A review. Plant, Soil and Environment, 54(3): 89-99.
Arbelet-Bonnin, D. Blasselle, C. Rose Palm, E. Redwan, M. PonnaiaH. M. et al. (2020). Metabolism regulation during salt exposure in the halophyte Cakile maritima. Environmental and Experimental Botany, 177: 104075.
Arbona, V. Manzi, M. Ollas, C. D. Gómez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International journal of molecular sciences, 14(3):: 4885-4911.
Ashraf, M. Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166: 3-16.
Bates, L. S. Waldren, R. Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.
Bohnert, H. J. Jensen, R. G. (1996). Strategies for engineering water-stress tolerance in plants. Trends Biotechnol,. 14: 89–97.
Bueno, M. Cordovilla, M. P. (2019). Polyamines in Halophytes. Front. Plant Sci. 9:10: 439.
Cheng, Y. Yang, P. Zhao, L. Priyadarshani, S. Zhou, Q. et al. (2019). Studies on genome size estimation, chromosome number, gametophyte development and plant morphology of salt-tolerant halophyte Suaeda salsa. BMC Plant Biol, 19(1): 473.
Cuin, T. A. Shabala, S. (2007). Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta, 225(3): 753-761.
Di Martino, C. Delfine, S. Pizzuto, R. Loreto, F. Fuggi, A. (2003). Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytologist, 158(3): 455-463.
Diray-Arce, J. Clement, M. Gul, B. Khan, M. A, Nielsen, B. L. (2015). Transcriptome assemblY. profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance. BMC Genomics, 16(1): 353.
El Moukhtari, A. Cabassa-Hourton, C. Farissi, M. Savouré, A. (2020). How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development. Frontiers in Plant Science, 23;11:1127. El-Samad, H. M. A. Shadad, M. A. K. Barak, N. (2011). Improvement of plants salt tolerance by exogenous application of amino acids. Journal of Medicinal Plants, 5: 5692-5699.
Flowers, T. J. Galal, H. K. Bromham, L. (2010). Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology, 37: 604-612.
Fukusaki, E. Kobayashi, A. (2005). Plant metabolomics: potential for practical operation. J Biosci Bioeng, 100(4): 347-354.
Guo, S. M. Tan, Y. Chu, H. J. Sun, M. X. Xing J. C. (2019). Transcriptome sequencing revealed molecular mechanisms underlying tolerance of Suaeda salsa to saline stress. PLOS ONE, 14(7): e219979.
Hartzendorf, T. Rolletschek, H. (2001). Effects of NaCl-salinity on amino acid and carbohydrate contents of Phragmites australis. Aquatic Botany, 69: 195-208.
Hong, J. Yang, L. Zhang, D. Shi, J .(2016). Plant Metabolomics: An Indispensable System Biology Tool for Plant Science. Int J Mol Sci, 17(6):767.Huang, Z. Zhao, L. Chen, D. Liang, M. Liu, Z. et al. (2013). Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS One, 8(4): e62085.
Khedr, A. H. A. Abbas, M. A. Wahid, A. A. A. Quick, W. P. Abogadallah, G. M. (2003). Proline induces the expression of salt‐stress‐responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt‐stress. Journal of Experimental Botany, 54(392): 2553-2562.
Kord, H. Fakheri, B. Ghabooli, M. Solouki, M. Emamjomeh, A. Khatabi, B. Sepehri, M. Salekdeh, G. H. Ghaffari, M. R. (2019). Salinity-associated microRNAs and their potential roles in mediating salt tolerance in rice colonized by the endophytic root fungus Piriformospora indica. Funct Integr Genomics, 19(4): 659-672.
Koyro, H. W. C, Z. R. Debez, A. Huchzermeyer, B. (2013). The effect of hyper-osmotic salinity on protein pattern and enzyme activities of halophytes. Funct Plant Biol, 40(9): 787-804.
Kusano, T. Berberich, T. Tateda, C. Takahashi, Y. (2008). Polyamines: essential factors for growth and survival. Planta, 228(3): 367-381.
Li, Q. Song, J. (2019). Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species. BMC plant biology, 19: 388-388.
Lu, X. Liu, J. Liu, Y. Zhang, Z. Tang, Z. (2022). Suaeda glauca and Suaeda salsa Employ Different Adaptive Strategies to Cope with Saline–Alkali Environments. Agronomy, 12:10: 2496.
Maggio, A. Miyazaki, S. Veronese, P. Fujita, T. Ibeas, J. I. et al. (2002). Does proline accumulation play an active role in stress-induced growth reduction. Plant J , 31(6): 699-712.
Mansour, M. M. F. (1998). Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. Plant Physiology and Biochemistry, 36: 767-772.
Meng, X. Zhou, J. Sui, N. (2018). Mechanisms of salt tolerance in halophytes: Current understanding and recent advances. Open Life Sciences, 13: 149-154.
Nasir, F. A. Batarseh, M. Abdel-Ghani, A. H. Jiries, A. (2010). Free Amino Acids Content in Some Halophytes under Salinity Stress in Arid Environment, Jordan. CLEAN – Soil, Air, Water, 38: 592-600.
Nerd, A. Pasternak, D. (1992). GrowtH. ion accumulation, and nitrogen fractioning in Atriplex barclayana grown at various salinities. Society for Range Management, pp. 164-166.
Obata, T. Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci, 69(19): 3225-3243.
Panta, S. Flowers, T. Lane, P. Doyle, R. Haros, G. Shabala, S. (2014). Halophyte agriculture: success stories. Exp. Bot, 107: 71–83.
Parida, A. K Veerabathini, S. K. Kumari, A. Agarwal, P. K. (2016). Physiological, Anatomical and Metabolic Implications of Salt Tolerance in the Halophyte Salvadora persica under Hydroponic Culture Condition. Front. Plant Sci, 22;7: 351.
Ramanjulu, S. Sudhakar, C. (2000). Proline metabolism during dehydration in two mulberry genotypes with contrasting drought tolerance. Plant Physiology, 157: 81-85.
Ray, S. Dansana, P. K. Giri, J. Deveshwar, P. Arora, R. et al. (2011). Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice. Funct Integr Genomics, 11(1): 157-178.
Shahid, S. Kausar, A. Zahra, N. et al. (2023). Methionine-Induced Regulation of Secondary Metabolites and Antioxidants in Maize (Zea mays L.) Subjected to Salinity Stress. Gesunde Pflanzen, 75: 1143–1155.
Shulaev, V, Cortes, D, Miller, G, Mittler, R (2008). Metabolomics for plant stress response. Physiol Plant, 132(2): 199-208.
Song, J. Wang, B. (2015). Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Ann Bot, 115(3): 541-553.
Thomas, J. C. De Armond, R. L. Bohnert, H. J. (1992). Influence of NaCl on GrowtH. Proline, and Phosphoenolpyruvate Carboxylase Levels in Mesembryanthemum crystallinum Suspension Cultures. Plant Physiology, 98(2): 626-631.
Vicente, O. Boscaiu, M. Naranjo, M. Á. Estrelles, E. Bellés, J. M. A. et al. (2004). Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). Journal of Arid Environments, 58: 463-481.
Xie, E. Wei, X. Ding, A. Zheng, L. Wu, X. et al. (2020). Short-Term Effects of Salt Stress on the Amino Acids of Phragmites australis Root Exudates in Constructed Wetlands. Water, 12: 569.
Xu, Y. Zhao, Y. Duan, H. Sui, N. Yuan, F. et al. (2017). Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa. BMC Genomics, 18: 727.
Yang, Z. Xie, T. Liu Q. (2014). Physiological responses of Phragmites australis to the combined effects of water and salinity stress. Ecohydrology, 7: 420-426.
Yazdanpanah, P. Jonoubi, P. Zeinalabedini, M. Rajaei, H. Ghaffari, M. R. Vazifeshenas, M. R. Abdirad, S. (2021). Seasonal Metabolic Investigation in Pomegranate (Punica granatum L.) Highlights the Role of Amino Acids in Genotype- and Organ-Specific Adaptive Responses to Freezing Stress. Front Plant Sci, 12;12:699139.
Narita,Y. Taguchi H. Nakamura T. Ueda A. Shi W. Takabe, T. (2004). Characterization of the salt-inducible methionine synthase from barley leaves. Plant Science, 167:1009–1016.
Zhang, X. Yao, Y. Li, X. Zhang, L. Fan, S. (2020). Transcriptomic analysis identifies novel genes and pathways for salt stress responses in Suaeda salsa leaves. Sci Rep, 10(1): 4236.
Zhao, L. Yang, Z. Guo, Q. Mao, S. Li, S. et al. (2017). Transcriptomic Profiling and Physiological Responses of Halophyte Kochia sieversiana Provide Insights into Salt Tolerance. Front. Plant Sci, 24;8:1985.
Zhao, Y. Ma, Y. Li, Q. Yang, Y. Guo, J. et al. (2018). Utilisation of stored lipids during germination in dimorphic seeds of euhalophyte Suaeda salsa. Functional Plant Biology, 45(10): 1009-1016.
Zhao, Y. Q. Ma, Y. C. Duan, H. M. Liu, R. R. Song, J. (2019). Traits of fatty acid accumulation in dimorphic seeds of the euhalophyte Suaeda salsa in saline conditions. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 153: 514-520.