با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : مروری

نویسندگان

1 دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران.

2 بخش زیست‌شناسی سامانه‌ها، پژوهشگاه بیوتکنولوژی کشاورزی، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران.

3 بخش زیست‌شناسی سامانه‌ها، پژوهشگاه بیوتکنولوژی کشاورزی، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

4 بخش به‌نژادی، موسسه تحقیقات پنبه کشور، سازمان تحقیقات آموزش و ترویج کشاورزی، گرگان، ایران.

چکیده

امروزه به‌کارگیری فناوری‌های پیشرفته مانند سیستم موقعیت‌یابی جهانی، هواپیماهای بدون سرنشین، نقشه‌برداری ماهواره‌ای، حسگرهای از راه دور و ماشین‌آلات دقیق کشاورزی حجم زیادی از کلان‌داده‌ها را در طول فرایند تولید در اختیار کشاورزان قرار می‌دهد که می‌تواند به‌عنوان بخشی از اقتصاد دیجیتال در کشاورزی دقیق محسوب شده و مورد بهره‌برداری اقتصادی قرار گیرد. تجزیه و تحلیل این داده‌ها به‌علت پیچیدگی قادر به پردازش توسط سیستم‌های پردازش سنتی نمی‌باشد. با توجه به اندازه و پیچیدگی کلان‌داده، هوش‌مصنوعی قادر است از طریق الگوریتم‌های یادگیری ماشین، این داده‌ها را به اطلاعات ارزشمند تبدیل نماید. از برنامه‌های کاربردی و در حال توسعه هوش‌مصنوعی می‌توان به الگوریتم‌های پیش‌بینی عملکرد، کاهش نهاده‌های کشاورزی مانند کود و سم، نظارت بر شرایط رشد محصولات، مدیریت آفات، به‌نژادی و مطالعات مولکولی و درنهایت مدیریت زنجیره ارزش اشاره کرد. برنامه‌های در حال توسعه با استفاده از هوش‌مصنوعی به‌زودی قادر خواهند بود علاوه بر تعیین زمان کشت، زمان ورود محصولات کشاورزی به بازار را نیز مدیریت کنند تا درنهایت سبب افزایش بهره‌وری شوند. تولید کودهای زیستی از ضایعات کشاورزی می‌تواند دستاورد دیگری از توسعه الگوریتم‌های بر پایه هوش‌مصنوعی برای کاهش اثرات منفی زیست محیطی و افزایش بهره‌وری اقتصادی از ضایعات باقیمانده از محصولات کشاورزی باشد. در این مطالعه کاربردهای توسعه‌ای و تحقیقی هوش‌مصنوعی و تأثیر آن در کشاورزی دقیق مورد بحث قرار می‌گیرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Artificial intelligence technology in agriculture; Prospects, applications and challenges

نویسندگان [English]

  • Mojtaba Khayam Nekouei 1
  • Mohammad Reza Ghaffari 2
  • Mohsen Mardi 2
  • Zahra Ghorbanzadeh 3
  • Rasmieh Hamid 4
  • Mehrshad Zeinalabedini 2

1 Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.

2 Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

3 Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

4 Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.

چکیده [English]

Today, using advanced technologies such as the global positioning system (GPS), agricultural drones, satellite mapping, remote sensors, and precision agriculture machinery provides farmers with a lot of big data during production. According to the reports, this can be considered a part of the digital economy in precision agriculture and be economically exploited. The analysis of this data cannot be processed by traditional processing systems due to its complexity. Given the size and complexity of big data, artificial intelligence can transform this data into valuable information through machine learning algorithms. This technology is being used to performance prediction algorithms, reducing agricultural inputs such as fertilizers and poisons, monitoring the growing conditions, pest management, breeding, molecular studies and finally value chain management. Developing programs using artificial intelligence technology will soon be able to manage the time of agricultural products entering the market, in addition to determining the planting time in order to increase productivity. The production of bio fertilizer from agricultural waste can be another achievement of the development of algorithms based on artificial intelligence to reduce the negative environmental effects and increase the economic productivity of the remaining waste from agricultural products. This study discusses the important applications of artificial intelligence in agriculture and its impact on Precision agriculture.

کلیدواژه‌ها [English]

  • Artificial intelligence
  • Big data
  • Machine learning
  • Precision Agriculture
Arvind, G, Athira, V. G, Haripriya, H, Rani, R. A, & Aravind, S. (2017, April). Automated irrigation with advanced seed germination and pest control. In 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR) (pp. 64-67). IEEE. Awasthi, Y. (2020). Press “a” for artificial intelligence in agriculture: A review. JOIV: International Journal on Informatics Visualization, 4(3), 112-116. Azadnia, R., Jahanbakhshi, A., Rashidi, S., & Bazyar, P. (2022). Developing an automated monitoring system for fast and accurate prediction of soil texture using an image-based deep learning network and machine vision system. Measurement, 190, 110669. Ben Ayed, R., & Hanana, M. (2021). Artificial intelligence to improve the food and agriculture sector. Journal of Food Quality, 2021, 1-7. Beloev, I., Kinaneva, D., Georgiev, G., Hristov, G., & Zahariev, P. (2021). Artificial intelligence-driven autonomous robot for precision agriculture. Acta Technologica Agriculturae, 24(1), 48-54. Bhagat, P. R., Naz, F., & Magda, R. (2022). Artificial intelligence solutions enabling sustainable agriculture: A bibliometric analysis. PloS one, 17(6), 0268989. Chavan, T. R., & Nandedkar, A. V. (2018). AgroAVNET for crops and weeds classification: A step forward in automatic farming. Computers and electronics in agriculture, 154, 361-372. Chen, H., Chen, A., Xu, L., Xie, H., Qiao, H., Lin, Q., & Cai, K. (2020). A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources. Agricultural Water Management, 240, 106303. Choudhary, S., Gaurav, V., Singh, A., & Agarwal, S. (2019). Autonomous crop irrigation system using artificial intelligence. Int. J. Eng. Adv. Technol, 8(5), 46-51. Cook, P., & O'Neill, F. (2020). Artificial intelligence in agribusiness is growing in emerging markets. Cubric, M. (2020). Drivers, barriers and social considerations for AI adoption in business and management: A tertiary study. Technology in Society, 62, 101257. Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48, 24-42. Dharmaraj, V., & Vijayanand, C. (2018). Artificial intelligence (AI) in agriculture. International Journal of Current Microbiology and Applied Sciences, 7(12), 2122-2128. Elbeltagi, A., Kushwaha, N. L., Rajput, J., Vishwakarma, D. K., Kulimushi, L. C., Kumar, M., ... & Abd-Elaty, I. (2022). Modelling daily reference evapotranspiration based on stacking hybridization of ANN with meta-heuristic algorithms under diverse agro-climatic conditions. Stochastic Environmental Research and Risk Assessment, 36(10), 3311-3334. Eli-Chukwu, N. C. (2019). Applications of artificial intelligence in agriculture: A review. Engineering, Technology & Applied Science Research, 9(4). Fallah, M., & Ghanbari Parmehr, E. (2023). Detection of Chilo Suppressalis using Smartphone Images and Deep Learning. Journal of Agricultural Machinery, 13(2), 195-211. Fusari, C. M., Kooke, R., Lauxmann, M. A., Annunziata, M. G., Enke, B., Hoehne, M., ... & Keurentjes, J. J. (2017). Genome-wide association mapping reveals that specific and pleiotropic regulatory mechanisms fine-tune central metabolism and growth in Arabidopsis. The Plant Cell, 29(10), 2349-2373. Gentili, A., Compagnucci, F., Gallegati, M., & Valentini, E. (2020). Are machines stealing our jobs? Cambridge Journal of Regions, Economy and Society, 13(1), 153-173. Gerhards, R., & Christensen, S. (2003). Real‐time weed detection, decision making and patch spraying in maize, sugarbeet, winter wheat and winter barley. Weed research, 43(6), 385-392. Harfouche, A. L., Jacobson, D. A., Kainer, D., Romero, J. C., Harfouche, A. H., Mugnozza, G. S.,... & Altman, A. (2019). Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends in biotechnology, 37(11), 1217-1235. Hesami, M., & Jones, A. M. P. (2020). Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Applied Microbiology and Biotechnology, 104, 9449-9485. Holzinger, A., Keiblinger, K., Holub, P., Zatloukal, K., & Müller, H. (2023). AI for life: Trends in artificial intelligence for biotechnology. New Biotechnology, 74, 16-24. Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Artificial intelligence applications for industry 4.0: A literature-based study. Journal of Industrial Integration and Management, 7(01), 83-111. Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15-30. Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, 1-12. Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., & Landivar-Bowles, J. (2021). The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Current Opinion in Biotechnology, 70, 15-22. Kakani, V., Nguyen, V. H., Kumar, B. P., Kim, H., & Pasupuleti, V. R. (2020). A critical review on computer vision and artificial intelligence in food industry. Journal of Agriculture and Food Research, 2, 100033. Kamyshova, G., Osipov, A., Gataullin, S., Korchagin, S., Ignar, S., Gataullin, T., ... & Suvorov, S. (2022). Artificial neural networks and computer vision’s-based phytoindication systems for variable rate irrigation improving. IEEE Access, 10, 8577-8589. Khan, M. H. U., Wang, S., Wang, J., Ahmar, S., Saeed, S., Khan, S. U., ... & Feng, X. (2022). Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding. International Journal of Molecular Sciences, 23(19), 11156. Khoshnevisan, B., Rafiee, S., Pan, J., Zhang, Y., & Liu, H. (2020). A multi-criteria evolutionary-based algorithm as a regional scale decision support system to optimize nitrogen consumption rate; A case study in North China plain. Journal of Cleaner Production, 256, 120213. Kim, K. H., Kim, M. G., Yoon, P. R., Bang, J. H., Myoung, W. H., Choi, J. Y., & Choi, G. H. (2022). Application of CCTV image and semantic segmentation model for water level estimation of irrigation channel. Journal of The Korean Society of Agricultural Engineers, 64(3), 63-73. Krisnawijaya, N. N. K., Tekinerdogan, B., Catal, C., & van der Tol, R. (2022). Data analytics platforms for agricultural systems: A systematic literature review. Computers and Electronics in Agriculture, 195, 106813. Kumbi, A. A., & Birje, M. N. (2022). Deep CNN based sunflower atom optimization method for optimal water control in IoT. Wireless Personal Communications, 1-26. Kumar, R., Yadav, S., Kumar, M., Kumar, J., & Kumar, M. (2020). Artificial intelligence: new technology to improve Indian agriculture. International Journal of Chemical Studies, 8(2), 2999-3005. Kushwaha, N. L, Elbeltagi, A, Mehan, S, Malik, A, & Yousuf, A. (2022). Comparative study on morphometric analysis and RUSLE-based approaches for micro-watershed prioritization using remote sensing and GIS. Arabian Journal of Geosciences, 15(7), 564. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674. Liao, M., & Yao, Y. (2021). Applications of artificial intelligence‐based modeling for bioenergy systems: A review. GCB Bioenergy, 13(5), 774-802. Liu, S. Y. (2020). Artificial intelligence (AI) in agriculture. IT Professional, 22(3), 14-15. Lokers, R., Knapen, R., Janssen, S., van Randen, Y., & Jansen, J. (2016). Analysis of Big Data technologies for use in agro-environmental science. Environmental modelling & software, 84, 494-504. Mor, S., Madan, S., & Prasad, K. D. (2021). Artificial intelligence and carbon footprints: Roadmap for Indian agriculture. Strategic Change, 30(3), 269-280. Mohr, S., & Kühl, R. (2021). Acceptance of artificial intelligence in German agriculture: an application of the technology acceptance model and the theory of planned behavior. Precision Agriculture, 22(6), 1816-1844. Muraya, M. M., Chu, J., Zhao, Y., Junker, A., Klukas, C., Reif, J. C., & Altmann, T. (2017). Genetic variation of growth dynamics in maize (Zea mays L.) revealed through automated non‐invasive phenotyping. The Plant Journal, 89(2), 366-380. Nabwire, S., Suh, H. K., Kim, M. S., Baek, I., & Cho, B. K. (2021). Application of artificial intelligence in phenomics. Sensors, 21(13), 4363. Niazian, M., & Niedbała, G. (2020). Machine learning for plant breeding and biotechnology. Agriculture, 10(10), 436. Oliveira, R. C. D., & Silva, R. D. D. S. E. (2023). Artificial Intelligence in Agriculture: Benefits, Challenges, and Trends. Applied Sciences, 13(13), 7405. Omondiagbe, O. P., Lilburne, L., Licorish, S., & MacDonell, S. (2022). Soil Texture Prediction with Automated Deep Convolutional Neural Networks and Population Based Learning. Social Science Research Network, 40(03), 387. Patrício, D. I., & Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and electronics in agriculture, 153, 69-81. Pérez-Jaramillo, J. E., Carrión, V. J., de Hollander, M., & Raaijmakers, J. M. (2018). The wild side of plant microbiomes. Microbiome, 6, 1-6. Rai, K. K. (2022). Integrating speed breeding with artificial intelligence for developing climate-smart crops. Molecular Biology Reports, 49(12), 11385-11402. Ritharson, P. I., Raimond, K., Mary, X. A., Eunice, R. J., & Andrew, J. (2023). DeepRice: A deep learning and deep feature based classification of Rice leaf disease subtypes. Artificial Intelligence in Agriculture. Riese, F. M., & Keller, S. (2019). Soil texture classification with 1D convolutional neural networks based on hyperspectral data. arXiv preprint arXiv:1901.04846. Rodzalan, S. A., Yin, O. G., & Noor, N. N. M. (2020). A foresight study of artificial intelligence in the agriculture sector in Malaysia. J Crit Rev, 7, 1339-1346. Ryan, M. (2020). Agricultural big data analytics and the ethics of power. Journal of Agricultural and Environmental Ethics, 33, 49-69. Ryan, M., van der Burg, S., & Bogaardt, M. J. (2021). Identifying key ethical debates for autonomous robots in agri-food: a research agenda. AI and Ethics, 1-15. Schimmelpfennig, D., & Ebel, R. (2016). Sequential adoption and cost savings from precision agriculture. Journal of Agricultural and Resource Economics, 97-115. Shakoor, N., Lee, S., & Mockler, T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current opinion in plant biology, 38, 184-192. Sharma, R. (2021, May). Artificial intelligence in agriculture: a review. In 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 937-942). IEEE. Sood, A., Sharma, R. K., & Bhardwaj, A. K. (2022). Artificial intelligence research in agriculture: A review. Online Information Review, 46(6), 1054-1075. Sparrow, R., Howard, M., & Degeling, C. (2021). Managing the risks of artificial intelligence in agriculture. NJAS: Impact in Agricultural and Life Sciences, 93(1), 172-196. Syed-Ab-Rahman, S. F., Hesamian, M. H., & Prasad, M. (2022). Citrus disease detection and classification using end-to-end anchor-based deep learning model. Applied Intelligence, 52(1), 927-938. Tang, J., Arvor, D., Corpetti, T., & Tang, P. (2021). Mapping Center Pivot Irrigation Systems in the Southern Amazon from Sentinel-2 Images. Water 2021, 13, 298. Tetila, E. C., Machado, B. B., Astolfi, G., de Souza Belete, N. A., Amorim, W. P., Roel, A. R., & Pistori, H. (2020). Detection and classification of soybean pests using deep learning with UAV images. Computers and Electronics in Agriculture, 179, 105836. Tripodi, P., Nicastro, N., Pane, C., & Cammarano, D. (2022). Digital applications and artificial intelligence in agriculture toward next-generation plant phenotyping. Crop and Pasture Science. Udupi, V. R. (2019). Identification of soybean diseases using learning vector quantization neural network algorithm. Journal of Analysis and Computation (JAC), 1(1), 1-3. Vishwakarma, D. K., Pandey, K., Kaur, A., Kushwaha, N. L., Kumar, R., Ali, R.,... & Kuriqi, A. (2022). Methods to estimate evapotranspiration in humid and subtropical climate conditions. Agricultural Water Management, 261, 107378. Waleed, M., Um, T. W., Kamal, T., Khan, A., & Iqbal, A. (2020). Determining the precise work area of agriculture machinery using internet of things and artificial intelligence. Applied Sciences, 10(10), 3365. Weersink, A., Fraser, E., Pannell, D., Duncan, E., & Rotz, S. (2018). Opportunities and challenges for big data in agricultural and environmental analysis. Annual Review of Resource Economics, 10, 19-37. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming–a review. Agricultural systems, 153, 69-80. Xu, Y., Zhang, X., Li, H., Zheng, H., Zhang, J, Olsen, M. S., ... & Qian, Q. (2022). Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Molecular Plant, 15(11), 1664-1695. Yang, C. C., Prasher, S. O., Landry, J., & Ramaswamy, H. S. (2002). Development of neural networks for weed recognition in corn fields. Transactions of the ASAE, 45(3), 859. Yang, W., Guo, Z., Huang, C., Duan, L., Chen, G., Jiang, N., ... & Xiong, L. (2014). Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nature communications, 5(1), 5087. Yu, Y., Xu, T., Shen, Z., Zhang, Y., & Wang, X. (2019). Compressive spectral imaging system for soil classification with three-dimensional convolutional neural network. Optics Express, 27(16), 23029-23048. Zhang, C., Yue, P., Di, L., & Wu, Z. (2018). Automatic identification of center pivot irrigation systems from landsat images using convolutional neural networks. Agriculture, 8(10), 147. Zhang, Y., Chu, J., Leng, L., & Miao, J. (2020). Mask-refined R-CNN: A network for refining object details in instance segmentation. Sensors, 20(4), 1010. Zhang, P., Guo, Z., Ullah, S., Melagraki, G., Afantitis, A., & Lynch, I. (2021). Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nature Plants, 7(7), 864-876.