با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، دانشگاه رازی، کرمانشاه، ایران.

2 مرکز تحقیقات غلات، دانشگاه رازی، کرمانشاه، ایران.

3 مرکز تحقیقات ژنتیک و بیوانفورماتیک، فیورنزولا، ایتالیا.

چکیده

در بین غلات گندم دوروم (Triticum turgidum L. var. durum) پس از گندم نان یکی از مهم‌ترین منابع پروتئین و انرژی است و در اکثر کشورهای جهان نقش عمده‌ای در تغذیه انسان دارد. در این تحقیق به منظور شناسایی و مکان‌یابی جایگاه‌های ژنی کنترل کننده صفات کیفی نشاسته و فیبر شوینده خنثی دانه در گندم دوروم، 118 لاین اینبرد نوترکیب گندم دوروم حاصل از تلاقی بین ژنوتیپ بومی "ایران -249" با منشاء کرمانشاه و رقم بومی زردک به همراه والدین در قالب طرح بلوک‌های کامل تصادفی با سه تکرار طی دو سال زراعی (1392-1393، 1393-1394) تحت شرایط دیم در مرکز تحقیقات آچیراله ارزیابی شدند. برای شناسایی مناطق ژنومی که تاثیر قابل توجهی بر صفات مورد مطالعه داشتند، تجزیه QTL با استفاده از روش مکان‌یابی فاصله‌ای مرکب فراگیر انجام شد. برای دو صفت اندازه گیری شده محتوی نشاسته دانه و فیبر شوینده خنثی در مجموع شش QTL شناسایی شد. برای صفت محتوی نشاسته دانه سه QTL بر روی کروموزوم‌ 7A و یک QTL بر روی کروموزوم 4B شناسایی شد. برای صفت فیبر شوینده خنثی یک QTL بر روی کروموزوم‌ 6B و یک QTL بر روی کروموزوم 7A مکان‌یابی شد. شناسایی و مکان‌یابی QTLهای کنترل کننده صفات مرتبط با خصوصیات کیفی دانه می‌تواند فرصتی را برای بهبود این صفات از طریق انتخاب به کمک نشانگر فراهم کند. نتایج حاصل QTLهایی با پتانسیل اصلاحی بالا همراه با نشانگرهای مرتبطی که برای مکان‌یابی دقیق و به‌نژادی مولکولی مفید می‌باشند ارائه می‌نمایند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Localization of QTLs controlling starch and neutral detergent fiber of durum wheat grain

نویسندگان [English]

  • Sina Ghanbari 1
  • Kianoosh Cheghamirza 1
  • leila zarei 2
  • Roghayeh Naseri 1
  • Elisabetta Mazzucotelli 3

1 Department of Plant Production Engineering and Genetics, Faculty of Sciences and Agricultural Engineering, Razi University of Kermanshah, Iran.

2 Cereal Research Center, Razi University of Kermanshah, Iran.

3 3Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy.

چکیده [English]

Among cereals, durum wheat (Triticum turgidum L. var. durum) is one of the most important protein and energy sources after bread wheat. It has a significant role in human nutrition in most countries. In this study, to identify and localization of QTLs controlling traits related to starch and Neutral detergent fiber, 118 durum wheat recombinant inbred lines obtained from the cross between the local genotype of Iran-249 originated from the west of Iran and the local cultivar of Zardak from Kermanshah were evaluated in two environments (2014 and 2015) under rainfall conditions using randomized complete block design along with parents in three replications. QTL analysis for each trait was performed using the inclusive composite interval mapping method to identify genomic regions that significantly affected the studied traits. A total of six QTLs were identified for the two traits measured, grain starch content and neutral detergent fiber. Three QTLs were identified on chromosome 7A and one QTL on chromosome 4B for the grain starch content trait. For the neutral detergent fiber trait, one QTL was localization on chromosome 6B and one QTL on chromosome 7A. Identifying and localization QTLs controlling traits related to seed quality characteristics can provide an opportunity to improve these traits through marker-assisted selection. Also, these results can create a basis for identifying candidate genes and map-based cloning and confirming QTL function.

کلیدواژه‌ها [English]

  • epistasis
  • Inclusive Composite Interval Mapping
  • Marker-assisted Selection
  • Triticum turgidum L
Abumhadi, N., Kamenarova, K., Todorovska, E., Dimov, G., Trifonova, A., Gecheff, K. & Atanassov, A. (2005). Callus induction and plant regeneration from barley mature embryos (Hordeum vulgare L.). Biotechnology and Biotechnology Equipment, 19 (3), 32-38. Anjum, F.M., Khan, M.R., Din, A., Saeed, M, Pasha, I., & Arshad, M.U. (2007). Wheat gluten: high molecular weight glutenin subunits–structure, genetics, and relation to dough elasticity. Journal of Food Science, 72 (3), 56-63. Barnett, K. & Harder, S. (2014). Remedies in Australian private law: Cambridge University Press. Colasuonno, P., Marcotuli, I., Gadaleta, A., & Soriano, J.M. (2021). From genetic maps to QTL cloning: an overview for durum wheat. Plants, 10 (2), 315-326. Darvasi, A. & Soller, M. (1997). A simple method to calculate resolving power and confidence interval of QTL map location. Genetics, 27, 125-132. Deng, Z., Tian, J., Chen, F., Li, W., Zheng, F. & Chen, J. (2014). Genetic dissection on wheat flour quality traits in two related populations. Euphytica, 1-15. Esposito, S., Taranto, F., Vitale, P., Ficco, D.B., Colecchia, S.A., Stevanato, P. & De Vita, P. (2022). Unlocking the molecular basis of wheat straw composition and morphological traits through multi-locus GWAS. BMC Plant Biology, 22, 519-538. Fan, X., Liu, X., Feng, B., Zhou, Q., Deng, G., Long, H., Cao, J., Gou, Sh., Ji, G., Xu, Z.H. & Wang, T. (2022). Construction of a novel Wheat 55 K SNP array-derived genetic map and its utilization in QTL mapping for grain yield and quality related traits. Frontiers of Genetics, 1- 14. Gupta, P.K., Langridge, P., & Mir, R.R. (2010). Marker-assisted wheat breeding: present status and future possibilities. Molecular Breeding, 26, 145-161. International Grains Council (IGC). (2020). World grain statistics 2016 [Online]. Available: 1051 https://www.igc.int/en/subscriptions/subscription.aspx [Accessed 05/21/2020]. Joehanes, R. & Nelson, J. (2008). QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics, 24 (23), 2788-2789. Krishnappa, G., Singh, A.M., Chaudhary, S., Ahlawat, A.K., Singh, S. K., Shukla, R.B., Jaiswal, J.P., Singh, G. & Solanki, I, S. (2017). Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.). PLoS ONE, 12 (4), 1-17. Lewin, H. A., Larkin, D. M., Pontius, J. & O’Brien, S. J. (2009). Every genome sequence needs a good map. Genome Research, 19, 1925-1928. Liu, H., Able, A. J. & Able, J.A. (2019). Genotypic performance of Australian durum under single and combined water-deficit and heat stress during reproduction. Scientific Report, 9, 14986. Liu, Y., Tao, Y., Wang, Z., Guo, Q., Wu, F. & Yang, X. (2018). Identification of QTL for flag leaf length in common wheat and their pleiotropic effects. Molecular Breeding, 38 (1), 1-11. Maccaferri, M., Sanguineti, M.C., Demontis, A., El-Ahmed, A., Garcı´a del Moral, L., Maalouf, F., Rhouma, S., Royo, C., Villegas, D. & Tuberosa, R. (2011). Association mapping in durum wheat grown across a broad range of water regimes. Journal of Experimental Botany, 62, 409-438. Majzoobi, M., Radi, M., Farahnaki, A., Jamalian, J. & Mesbahi, G. (2008). Effect of ascorbic acid on functional properties of wheat starch. Advances in Food and Nutrition Research, 58, 1-31. Majzoobi, M., Sabery, B., Farahnaky, A. & Karrila, T.T. (2012). Physicochemical properties of cross-linked-annealed wheat starch. Iranian Polymer Journal, 21, 513-22. McCartney, C. Somers, A., Lukow, D.J., Ames, O., Noll, N., Cloutier, J.S., Humphreys, D.G. & McCallum, B.D. (2006). QTL analysis of quality traits in the spring wheat cross L4452 x AC domain. Plant Breeding, 125, 565-575. Mulualem, T. & Bekeko, Z. (2016). Advances in Quantitative Trait Loci, Mapping and Importance of Markers Assisted Selection in Plant Breeding Research. International Journal of Plant Breeding and Genetics, 10 (2), 58- 68. Nachit, M.M., Elouafi, I., Pagnotta, M.A., El Saleh, A., Lacono, E. & Labhilili M. (2001). Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theoretical and Applied Genetics, 102, 177-186. Naseri, R. (2023). Identification and localization of chemical compounds QTLs of durum wheat grain (Ph.D. Thesis). Razi University. Noori, M. & Taliman, N.A. (2022). Effect of drought stress and chemical fertilizers on wheat productivity and grain quality, Plant Production and Genetics, 3(1), 43-56. Oba, M. & Allen, M.S. (1999) Evaluation of the importance of NDF digestibility: Effects on dry matter intake and milk yield of dairy cows. Journal of Dairy Science, 82(3), 589-596. OECD; FAO. (2022). OECD-FAO Agricultural Outlook 2022–2031; OECD: Paris, France. Sen, S. & Churchill, G. A. (2001). A statistical framework for quantitative trait mapping. Genetics, 159, 371-387. Soriano, J.M., Colasuonno, P., Marcotuli, I. & Gadaleta, A. (2021). Meta-QTL analysis and identifcation of candidate genes for quality, abiotic and biotic stress in durum wheat. Scientifics Reports, 11, 1-17. Tester, R.F., Karkalas, J. & Qi, X. (2004). Starch-composition, fine structure and architecture. Journal of Cereal Science, 39,151-65. Wang, Y., Xu, X., Hao, Y., Zhang, Y., Liu, Y. & Pu, Z. (2021). QTL mapping for grain zinc and iron concentrations in bread wheat. Frontiers of Nutrition, 8, 1- 11. Würschum, T., Maurer, H.P., Schulz, B., Möhring, J. & Reif, J.C. (2011). Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theoretical and Applied Genetics, 123, 109-118. Yang, Z., Jin, L., Zhu, H., Wang, S., Zhang, G. & Liu, G. (2018). Analysis of Epistasis among QTLs on Heading Date based on Single Segment Substitution Lines in Rice. Scientific Reports, 8, 3059. Zarei, L. (2011). Mapping QTLs related to drought tolerance in durum wheat (Triticum turgidum var durum. (Ph.D. Thesis). Razi University. Zeng, Z. B. 1994. Precision mapping of quantitative trait loci. Genetics, 136 (4), 1457-68. Zhang, S., Ghatak, A., Bazargani, M.M., Bajaj, P., Varshney, R.K. & Chaturvedi, P. (2021). Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. Plant Journal, 107 (3), 669-687. Zhou, Y., Conway, B., Miller, D., Marshall, D., Cooper, A., Murphy, P. & Costa, J. (2017). Quantitative trait loci mapping for spike characteristics in hexaploid wheat. The Plant Genome, 10 (2), 1-16.