اثر محرک رشدی سویه‌های بومی سیانوباکتری بر جوانه‌زنی برنج همراه با تحلیل بیوانفورماتیکی ‏خانواده ژنی آمونیوم ترانسپورتر (‏OsAMTs‏)‏

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.

2 گروه بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

3 گروه مهندسی ژنتیک و بیولوژی، پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری

4 هیئت علمی دانشگاه علوم کشاورزی و منابع طبیعی ساری و رئیس پژوهشکده ژنتیک و زیست فناوری طبرستان

5 گروه ژنتیک و بهنژادی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

سیانوباکتری‌ها به دلیل تثبیت بیولوژیکی نیتروژن، محلولسازی‌فسفات و تولید مواد تقویتکننده رشد نقش مهمی در بهبود حاصلخیزی خاک و افزایش بهرهوری محصولات ارگانیک دارند. این تحقیق تأثیر سویههای مختلف سیانوباکتری (هشت سویه) بر رشد سه رقم برنج (فجر، روشن و طارم) در مرحله جوانه‌زنی، بررسی شد. با توجه به فرم ترجیحی جذب نیتروژن در برنج‌های غرقاب (آمونیوم)، مطالعه خانواده ژنی انتقال دهنده‌های آمونیوم (AMT) مدنظر قرار گرفت. در این آزمایش اثر سیانوباکتری بر صفتهای درصد جوانه‌زنی، سرعت جوانه‌زنی، طول ریشه‌چه، نسبت طول ریشه‌چه به ساقه‌چه، وزن خشک تک بوته و وزن تر تک بوته مورد مطالعه معنی‌دار بود. بهبود شاخص‌های جوانه‌زنی در همکشتی دو رقم پرمحصول روشن و فجر با هشت سویه سیانوباکتر، نسبت به رقم کیفی طارم هاشمی معنی‌دار بود. میزان برونریزش ازت در هر هشت سویه متفاوت بوده و بالاترین میزان برونریزش نیترات و آمونیوم در سویه شماره 7 به ترتیب به مقدار 08/0 میکروگرم بر میلیلیتر و 010/0 میکروگرم بر میلی‌لیتر مشاهده شد. در بررسی بیوانفورماتیکی، 12 مکان ژنی و 15 ایزوفرم OsAMT در ژنوم گیاه برنج شناسایی شد. بررسی اعضای خانواده ژنی OsAMT در پایگاه‌های اختصاصی دمین نشان داد که همه ژن‌های مورد بررسی (بجز OsAMT 3.4) دارای دمین پروتئینی انتقال‌دهنده آمونیوم می‌باشند. بررسی ساختار ژنی و روابط تکاملی OsAMTها نشان داد، همه OsAMTها در سه گروه طبقه‌بندی‌شده که هر گروه از الگوهای موتیف و ساختارهای اگزون/اینترون مشابه برخوردارند. شناسایی ژن‌های فعال و غیرفعال OsAMT در آنالیز این‌سیلیکو می‌تواند در مطالعات بررسی ژنومیکس عملکردی خانواده ژنی انتقال‌دهنده آمونیوم برنج خصوصاً در شرایط همکشتی با سویه‌های سیانوباکتر راهگشا باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The growth promoting effect of native cyanobacterial strains on rice germination, as well as a In silico analysis of ammonium transporter (OsAMT) gene family

نویسندگان [English]

  • Aliakbar Babajanpour bora 1
  • Gholamali Ranjbar 2
  • Seyyed Hamidreza Hashemi-petroudi 3
  • Ghorbanali Nematzadeh 4
  • Hamid Najafi Zarini 5
1 Ph.D. Student in Genetic and Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Iran.
2 Department of Biotechnology, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran. 3. Professor, Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari A
3 Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU)
4 Sari Agricultural Sciences and Natural Resources University, University of the Philippines Los Banos
5 Associate Professor, Department of Biotechnology, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.
چکیده [English]

Cyanobacteria improve soil fertility and organic product productivity by synthesizing growth-promoting substances, phosphate solubilization, and biological nitrogen fixation. We investigated the effect of eight various cyanobacterial strains on the germination-stage development of three different rice varieties namely Fajr, Roshan, and Tarem. The ammonium transporter (AMT) gene family was studied because ammonium is the most favored form of nitrogen that flooded rice can absorb. The majority of the experimental parameters were considerably impacted by cyanobacteria. In contrast to the qualitative cultivar Tarem Hashemi, germination characteristics were considerably enhanced when eight cyanobacteria strains were co-cultivated with two high-yielding cultivars, Roshan and Fajr. The amounts of nitrate and ammonium were highest in strain 7, with concentrations of 0.08 μg/ml and 0.010 μg/ml, respectively, out of the eight strains tested for nitrogen excretion. In silico analysis discovered 12 gene loci and 15 OsAMT isoforms in the rice genome. Examining the OsAMT gene family members in protein domain-specific databases revealed that all of the examined genes (excluding OsAMT3;4) include an ammonium-transporting protein domain. Three groups of OsAMTs were identified based on their gene structures and evolutionary relationships; each group shared common motif patterns and exon/intron order. The identification of active and inactive OsAMT genes in bioinformatic analysis could bring new insights into functional genomics studies of the rice ammonium transporter gene family, particularly in co-cultivation with cyanobacteria.

کلیدواژه‌ها [English]

  • Ammonium transporter proteins (AMTs)
  • co-culture
  • cyanobacteria
  • nitrogen fixation
  • Oryza sativa
Adhikari, K., Bhandari, S., & Acharya, S. (2021). An overview of azolla in rice production, A Review. Reviews in Food and Agriculture 2(1), 04-08. Austin, M., Brewbaker, J., Wheeler, R., & Fownes, J. (1997). Short-rotation biomass trial of mixed and pure stands of nitrogen-fixing trees and Eucalyptus grandis. Australian Forestry 60(3), 161-168. Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., & Noble, W.S. (2009). MEME SUITE, tools for motif discovery and searching. Nucleic Acids Res 37, 202-208. Banerjee, M.R., Yesmin, L., Vessey, J.K., & Rai, M. (2006). Plant-growth-promoting rhizobacteria as biofertilizers and biopesticides. Handbook of microbial biofertilizers. Food Products Press, New York, 137-181. Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y., & Dhiba, D. (2018). Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Frontiers in microbiology 9, 1606. Bolser, D.M., Staines, D.M., Perry, E., & Kersey, P.J. (2017). "Ensembl plants, integrating tools for visualizing, mining, and analyzing plant genomic data," in Plant Genomics Databases. Springer), 1-31. Chen, Y., Li, Y., Fu, Y., Jia, L., Li, L., Xu, Z., Zhang, N., Liu, Y., Fan, X., & Xuan, W. (2024). The beneficial rhizobacterium Bacillus velezensis SQR9 regulates plant nitrogen uptake via an endogenous signaling pathway. Journal of Experimental Botany, erae125. El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi, M., Richardson, L.J., Salazar, G.A., & Smart, A. (2019). The Pfam protein families database in 2019. Nucleic acids research 47(D1), D427-D432. Esmaeilzadeh-Salestani, K., Samandari_Bahraseman, M.R., Tohidfar, M., Khaleghdoust, B., Keres, I., Mõttus, A., & Loit, E. (2023). Expression of AMT1; 1 and AMT2; 1 is stimulated by mineral nitrogen and reproductive growth stage in barley under field conditions. Journal of Plant Nutrition 46(7), 1246-1258. Fassbinder-Orth, C.A. (2014). Methods for quantifying gene expression in ecoimmunology, from qPCR to RNA-Seq. Integrative and Comparative Biology 54(3), 396-406. Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K., Holm, L., & Mistry, J. (2013). Pfam, the protein families database. Nucleic acids research 42(D1), D222-D230. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.e., Wilkins, M.R., Appel, R.D., & Bairoch, A. (2005a). Protein identification and analysis tools on the ExPASy server. Springer. Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M.R., Appel, R.D., & Bairoch, A. (2005b). Protein identification and analysis tools on the ExPASy server. in The proteomics protocols handbook, ed. J.M. Walker. (New York City, New York, United States, Humana Press), 571-607. Gazzarrini, S., Lejay, L., Gojon, A., Ninnemann, O., Frommer, W.B., & von Wirén, N. (1999). Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. The Plant Cell 11(5), 937-947. Heidari, P., Ahmadizadeh, M., Izanlo, F., & Nussbaumer, T. (2019). In silico study of the CESA and CSL gene family in Arabidopsis thaliana and Oryza sativa, Focus on post-translation modifications. Plant Gene 19, 100189. Horton, P., Park, K.-J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C., & Nakai, K. (2007a). WoLF PSORT, protein localization predictor. Nucleic Acids Res 35, 585-587. Horton, P., Park, K.-J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C., & Nakai, K. (2007b). WoLF PSORT, protein localization predictor. Nucleic acids research 35(suppl_2), W585-W587. Hu, B., Jin, J., Guo, A.-Y., Zhang, H., Luo, J., & Gao, G. (2014). GSDS 2.0, an upgraded gene feature visualization server. Bioinformatics 31(8), 1296-1297. Jalili-Manesh, M., Haddad-Mashadrizeh, A., Makhdoumi, A., & Housaindokht, M.R. (2019). Biocomputational Investigations of Structural and Functional Properties of Cry Proteins for‎ Malaria Biocontrol. Biological Journal of Microorganism 8(29), 25-40. Kabirnataj, S., Nematzadeh, G.A., Talebi, A.F., Tabatabaei, M., & Singh, P. (2018). Neowestiellopsis gen. nov, a new genus of true branched cyanobacteria with the description of Neowestiellopsis persica sp. nov. and Neowestiellopsis bilateralis sp. nov., isolated from Iran. Plant Systematics and Evolution 304, 501-510. Kabirnataj, S., Nematzadeh, G.A., Talebi, A.F., Tabatabai, M., & Singh, P. (2019). Identification of some heterocystous cyanobacteria isolated from rice fields of Mazandaran province with emphasis on multi-genic approach. Journal of Microbial World 12(3), 213-228. Kiliai, A.A., Nematzadeh, G., Soltani, N., & Shokravi, S. (2018). The investigation of phycobiliproteins in isolated heterocystous cyanobacteria from western Mazandaran. Journal of Iranian Plant Ecophysiological Research 13(49), 91-103. Kirrolia, A., Bishnoi, N., & Singh, R. (2012). Effect of shaking, incubation temperature, salinity and media composition on growth traits of green microalgae Chlorococcum sp. Journal of Algal Biomass Utilization 3(3), 46-53. Konishi, N., & Ma, J.F. (2021). Three polarly localized ammonium transporter 1 members are cooperatively responsible for ammonium uptake in rice under low ammonium condition. New Phytologist 232(4), 1778-1792. Kumar, A., Silim, S., Okamoto, M., Siddiqi, M., & Glass, A. (2003). Differential expression of three members of the AMT1 gene family encoding putative high‐affinity NH4+ transporters in roots of Oryza sativa subspecies indica. Plant, cell & environment 26(6), 907-914. LI, B.-z., Merrick, M., LI, S.-m., LI, H.-y., ZHU, S.-w., SHI, W.-m., & SU, Y.-h. (2009). Molecular basis and regulation of ammonium transporter in rice. Rice Science 16(4), 314-322. Li, C., Tang, Z., Wei, J., Qu, H., Xie, Y., & Xu, G. (2016). The OsAMT1. 1 gene functions in ammonium uptake and ammonium–potassium homeostasis over low and high ammonium concentration ranges. Journal of Genetics and Genomics 43(11), 639-649. Li, H., Cong, Y., Lin, J., & Chang, Y.H. (2015). Molecular cloning and identification of an ammonium transporter gene from pear. Plant Cell, Tissue and Organ Culture (PCTOC) 120, 441-451. Loqué, D., & von Wirén, N. (2004). Regulatory levels for the transport of ammonium in plant roots. Journal of experimental botany 55(401), 1293-1305. Lucas, J., Solano, B.R., Montes, F., Ojeda, J., Megias, M., & Mañero, F.G. (2009). Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crops Research 114(3), 404-410. Lucy, M., Reed, E., & Glick, B.R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie van leeuwenhoek 86, 1-25. Maguire, J.D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Sci. 2, 176-177. Mao, D., & Chen, C. (2012). Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. PloS one 7(10), e47275. Patel, A., Tiwari, S., & Prasad, S.M. (2021). Effect of time interval on arsenic toxicity to paddy field cyanobacteria as evident by nitrogen metabolism, biochemical constituent, and exopolysaccharide content. Biological Trace Element Research 199(5), 2031-2046. Rai, S., & Shukla, N. (2020). Biofertilizer, An alternative of synthetic fertilizers. J. Plant Arch 20, 1374-1379. Scherf, U., Ross, D.T., Waltham, M., Smith, L.H., Lee, J.K., Tanabe, L., Kohn, K.W., Reinhold, W.C., Myers, T.G., & Andrews, D.T. (2000). A gene expression database for the molecular pharmacology of cancer. Nature genetics 24(3), 236. Schultz, J., Copley, R.R., Doerks, T., Ponting, C.P., & Bork, P. (2000). SMART, a web-based tool for the study of genetically mobile domains. Nucleic acids research 28(1), 231-234. Sigrist, C.J., De Castro, E., Cerutti, L., Cuche, B.A., Hulo, N., Bridge, A., Bougueleret, L., & Xenarios, I. (2012). New and continuing developments at PROSITE. Nucleic Acids Res 41(D1), D344-D347. Sofo, A., Mininni, A.N., & Ricciuti, P. (2020). Soil macrofauna, A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy 10(4), 456. Sonoda, Y., Ikeda, A., Saiki, S., Wirén, N.v., Yamaya, T., & Yamaguchi, J. (2003). Distinct expression and function of three ammonium transporter genes (OsAMT1; 1–1; 3) in rice. Plant and Cell Physiology 44(7), 726-734. Tabata, R., Sumida, K., Yoshii, T., Ohyama, K., Shinohara, H., & Matsubayashi, Y. (2014). Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346(6207), 343-346. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6, molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 30(12), 2725-2729. Tesi, M., Pfau, T., Mengoni, A., & Fondi, M. (2020). Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nature communications 11(1), 1-11. Theerawitaya, C., Supaibulwatana, K., Tisarum, R., Samphumphuang, T., Chungloo, D., Singh, H.P., & Cha-Um, S. (2023). Expression levels of nitrogen assimilation-related genes, physiological responses, and morphological adaptations of three indica rice (Oryza sativa L. ssp. indica) genotypes subjected to nitrogen starvation conditions. Protoplasma 260(3), 691-705. VanGuilder, H.D., Vrana, K.E., & Freeman, W.M. (2008). Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44(5), 619-626. Wang, H., Niu, Q.W., Wu, H.W., Liu, J., Ye, J., Yu, N., & Chua, N.H. (2015). Analysis of non‐coding transcriptome in rice and maize uncovers roles of conserved lnc RNA s associated with agriculture traits. The Plant Journal 84(2), 404-416. Wang, W., Xin, W., Chen, N., Yang, F., Li, J., Qu, G., Jiang, X., Xu, L., Zhao, S., & Liu, H. (2023). Transcriptome and Co-Expression Network Analysis Reveals the Molecular Mechanism of Rice Root Systems in Response to Low-Nitrogen Conditions. International Journal of Molecular Sciences 24(6), 5290. Workbench, C.G. (2019). Version 6.5. 1. CLC bio A/S science park aarhus finlandsgade, 10-12. Wu, Y., Yang, W., Wei, J., Yoon, H., & An, G. (2017). Transcription factor OsDOF18 controls ammonium uptake by inducing ammonium transporters in rice roots. Molecules and Cells 40(3), 178. Xuan, Y.H., Hu, Y.B., Chen, L.-Q., Sosso, D., Ducat, D.C., Hou, B.-H., & Frommer, W.B. (2013). Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proceedings of the National Academy of Sciences 110(39), E3685-E3694. Yang, S., Yuan, D., Zhang, Y., Sun, Q., & Xuan, Y.H. (2021). BZR1 regulates brassinosteroid-mediated activation of AMT1; 2 in rice. Frontiers in plant science 12, 665883. Yang, W., Dong, X., Yuan, Z., Zhang, Y., Li, X., & Wang, Y. (2023). Genome-wide identification and expression analysis of the ammonium transporter family genes in soybean. International Journal of Molecular Sciences 24(4), 3991. Yanti, Y., & Hamid, H. (Year). "Development of the PGPR and Cyanobacteria Consortium for Growth Promotion and Control Ralstonia syzigii subsp. indonesiensis of Tomato", in, IOP Conference Series, Earth and Environmental Science, IOP Publishing), 012085. Yuan, L., Loqué, D., Kojima, S., Rauch, S., Ishiyama, K., Inoue, E., Takahashi, H., & von Wirén, N. (2007). The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. The Plant Cell 19(8), 2636-2652. Zou, C., Lehti-Shiu, M.D., Thomashow, M., & Shiu, S.-H. (2009). Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana. PLoS genetics 5(7), e1000581.