شناسایی مسیرهای عملکردی و ژن‌های کلیدی مؤثر در پاسخ به تنش کمبود نیتروژن در برنج

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد ژنتیک و به نژادی گیاهی، گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

2 گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران.

3 1- گروه علوم دامی، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران 2- بخش تحقیق و توسعه شرکت بیوژن تک، مرکز رشد واحدهای فناور پژوهشکده

4 استاد بیوتکنولوژی، گروه بیوتکنولوژی کشاورزی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران.

چکیده

برنج، به‌عنوان غذای اصلی قشر وسیعی از مردم دنیا، نقشی مهم و استراتژیک در سراسر جهان ایفا می‌کند. در فرآیند تولید برنج، تغییر در میزان عناصر در دسترس این گیاه از جمله نیتروژن، می‌تواند عملکرد این گیاه را به طور قابل توجهی تحت تأثیر قرار ‌دهد. نیتروژن با تأثیر قابل توجه بر فرآیندهای مختلف فیزیولوژیکی و بیوشیمیایی در سلول‌های گیاهی، نقش مهمی در تولید برنج ایفا می‌کند و بر رشد، نمو و عملکرد آن تأثیر می‌گذارد. با توجه به اهمیت نقش نیتروژن، هدف از این تحقیق، شناسایی ژن‌ها، مطالعه مسیرهای بیولوژیکی و برهمکنش‌های پروتئین-پروتئین مهم در برنج در واکنش به تنش کمبود نیتروژن بود. در این راستا مجموعه داده بیان ریزآرایه از پایگاه داده NCBI استخراج و ژن‌های با بیان متفاوت بین تیمار شاهد و شرایط تنش شناسایی شد. عملکردهای مولکولی و مسیرها و فرآیندهای بیولوژیکی مرتبط با این ژن‌ها با استفاده از ابزار برخط DAVID مورد بررسی و شناسایی قرار گرفت. به کمک نرم‌افزار Cytoscape پس از ترسیم شبکه ژنی، تعداد ده ژن به‌عنوان ژن‌های کلیدی در شبکه، انتخاب شدند. نتایج حاصل از پژوهش نشان داد فرآیند مواجهه و پاسخ گیاه به تنش در ساعات ابتدایی اعمال تنش، شامل مسیرهای سیگنال دهی و تولید آمینواسیدها است. در شرایط کمبود نیتروژن در خاک، بیان ژن‌های دخیل در فرآیند انتقال یون آهن و بیوسنتز آمینواسیدها به طور معنی‌داری افزایش می‌یابد. سنتز ناقل‌های یون آهن در فرآیند فتوسنتز برگ گیاه دخیل بوده و به نحوی موجب ایجاد تعادل و پایداری تولیدات فتوسنتزی می‌شود و باعث تغییر در خصوصیات مورفولوژی و عملکرد گیاه می‌شود. انتظار می‌رود که از این ژن‌های کلیدی، بتوان در برنامه‌های به‌نژادی در مقابله با تنش کمبود نیتروژن استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of functional pathways and key genes effective in response to nitrogen deficiency stress in rice

نویسندگان [English]

  • Shayan Kazemi-Lifshagerd 1
  • Atefeh Sabouri 2
  • Zahra Pezeshkian 3
  • Mohammad Mehdi Sohani 4
1 M.Sc. student Genetics and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
2 Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
3 Department of Animal Sciences, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran- -BioGenTAC Inc., Technology incubator of Agricultural Biotechnology Research Institute of Iran-North Branch (ABRII), Rasht, Iran
4 Full Professor Biotechnology, Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
چکیده [English]

Rice, as the primary food source for a large portion of the global population, holds significant strategic importance worldwide. Variations in the availability of elements such as nitrogen can greatly impact rice production. Nitrogen is crucial for rice growth, development, and performance by influencing various physiological and biochemical processes in plant cells. Considering the importance of the role of nitrogen, the aim of this research was to identify key genes, study biological pathways, and analyze important protein-protein interactions in rice under nitrogen deficiency stress. In this regard microarray expression data sets were extracted from the NCBI database, and differentially expressed genes between control and stress conditions were identified. Using DAVID online tools, the molecular functions, pathways, and biological processes related to these genes were investigated. Cytoscape software was used to construct a gene network, and ten key genes were identified. The study revealed that signaling pathways and amino acid production are prominently activated in the initial hours of nitrogen stress. Under nitrogen deficiency, the expression of genes involved in iron ion transport and amino acid biosynthesis significantly increases. The synthesis of iron ion transporters is crucial for photosynthesis in plant leaves, contributing to the balance and stability of photosynthetic products and leading to changes in the plant's morphological characteristics and performance. It is expected that these key genes can be used in breeding programs to deal with nitrogen deficiency stress.

کلیدواژه‌ها [English]

  • Bioinformatics analysis
  • Gene expression
  • Iron ion transporter
  • Microarray
  • Protein-protein network
Burgos, N., Sales, M., Song, J., Ren, Y., & de los Reyes, B. (2014). N-starvation and supplementation in weedy red rice. BioStudies, E-GEOD-59438. Retrieved from https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-GEOD-59438. Cai, H., Lu, Y., Xie, W., Zhu, T., & Lian, X. (2012). Transcriptome response to nitrogen starvation in rice. Journal of Biosciences, 37, 731-747. https://doi.org/10.1007/s12038-012-9242-2 Cao, P., Jung, K. H., Choi, D., Hwang, D., Zhu, J., & Ronald, P. C. (2012). The rice oligonucleotide array database: an atlas of rice gene expression. Rice, 5, 1-9. https://doi.org/10.1186/1939-8433-5-17 Chaturvedi, I. (2005). Effect of nitrogen fertilizers on growth, yield and quality of hybrid rice (Oryza sativa). Journal of Central European Agriculture, 6(4), 611-618. https://hrcak.srce.hr/17330 Chen, X. P., Zhu, Y. G., Hong, M. N., Kappler, A., & Xu, Y. X. (2008). Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants. Environmental Toxicology and Chemistry: An International Journal, 27(4), 881-887. https://doi.org/10.1897/07-368.1 Curie, C., & Briat, J. F. (2003). Iron transport and signaling in plants. Annual Review of Plant Biology, 54(1), 183-206. https://doi.org/10.1146/annurev.arplant.54.031902.135018 Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). DAVID: database for annotation, visualization, and integrated discovery. Genome Biology, 4, 1-11. https://doi.org/10.1186/gb-2003-4-9-r60 Durrani, I. S., Jan, A., Shah, S., Iqbal, A., Ahmad, D., Khan, H., & Naqvi, S. M. S. (2020). Bioinformatics studies of OSGLP8-12 gene from oryza sativa (japonica) reveal its role in conferring resistance against disease and stresses. Pakistan Journal of Botany, 52(2), 461-467. http://dx.doi.org/10.30848/PJB2020-2(23 Ethan, S., Odunze, A. C., Abu, S. T., & Iwuafor, E. N. O. (2011). Effect of water management and nitrogen rates on iron concentration and yield in lowland rice. Agriculture and Biology Journal of North America, 2(4), 622-629. 10.5251/abjna.2011.2.4.622.629 Feng, H., Fan, X., Miller, A. J., & Xu, G. (2020). Plant nitrogen uptake and assimilation: regulation of cellular pH homeostasis. Journal of Experimental Botany, 71(15), 4380-4392. https://doi.org/10.1093/jxb/eraa150 Groen, S. C., Ćalić, I., Joly-Lopez, Z., Platts, A. E., Choi, J. Y., Natividad, M., ... & Purugganan, M. D. (2020). The strength and pattern of natural selection on gene expression in rice. Nature, 578(7796), 572-576. https://doi.org/10.1038/s41586-020-1997-2 Hsieh., P. H., Kan., C. C., Wu., H. U., Yang., H. C., & Hsieh M. H. (2018). Early molecular events associated with nitrogen deficiency in rice seedling roots.. Scientific Reports, 8(1), 12207-12207. https://doi.org/10.1038/S41598-018-30632-1 Hou, W., Yan, J., Jákli, B., Lu, J., Ren, T., Cong, R., & Li, X. (2018). Synergistic effects of nitrogen and potassium on quantitative limitations to photosynthesis in rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 66(20), 5125-5132. https://doi.org/10.1021/acs.jafc.8b01135 Huang, X., Zhang, Y., Wang, L., Dong, X., Hu, W., Jiang, M., ... & Wu, Y. (2021). OsDOF11 affects nitrogen metabolism by sucrose transport signaling in rice (Oryza sativa L.). Frontiers in Plant Science, 12, 703034. https://doi.org/10.3389/fpls.2021.703034 Imam, Y. (2017). Cereal Production. Shiraz, Shiraz University Press. (in Persian) Kobayashi, T., Nozoye, T., & Nishizawa, N. K. (2019). Iron transport and its regulation in plants. Free Radical Biology and Medicine, 133, 11-20. https://doi.org/10.1016/j.freeradbiomed.2018.10.439 Li, Q., Lu, X., Wang, C., Shen, L., Dai, L., He, J., ... & Zeng, D. (2022). Genome-wide association study and transcriptome analysis reveal new QTL and candidate genes for nitrogen‐deficiency tolerance in rice. The Crop Journal, 10(4), 942-951. https://doi.org/10.1016/j.cj.2021.12.006. Liang, T., Yuan, Z., Fu, L., Zhu, M., Luo, X., Xu, W., ... & Wu, X. (2021). Integrative transcriptomic and proteomic analysis reveals an alternative molecular network of glutamine synthetase 2 corresponding to nitrogen deficiency in rice (Oryza sativa L.). International Journal of Molecular Sciences, 22(14), 7674. https://doi.org/10.3390/ijms22147674 Nazish, T., Arshad, M., Jan, S. U., Javaid, A., Khan, M. H., Naeem, M. A., ... & Ali, M. (2021). Transporters and transcription factors gene families involved in improving nitrogen use efficiency (NUE) and assimilation in rice (Oryza sativa L.). Transgenic Research, 1-20. https://doi.org/10.1007/s11248-021-00284-5 Sabouri, H. S. M. Hosseini. (2017). Rice. Gonbad Kavous. Gonbad Kavous University Press and Noruzi. (in Persian) Saito, R., Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L., Lotia, S., ... & Ideker, T. (2012). A travel guide to Cytoscape plugins. Nature Methods, 9(11), 1069-1076. https://doi.org/10.1038/nmeth.2212 Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M., ... & Lohmann, J. U. (2005). A gene expression map of Arabidopsis thaliana development. Nature Genetics, 37(5), 501-506. https://doi.org/10.1038/ng1543 Shao, C.-H., Qiu, C.-F., Qian, Y.-F., & Liu, G.-R. (2020). Nitrate deficiency decreased photosynthesis and oxidation-reduction processes, but increased cellular transport, lignin biosynthesis and flavonoid metabolism revealed by RNA-Seq in Oryza sativa leaves. PLoS One, 15(7), e0235975. https://doi.org/10.1371/journal.pone.0235975 Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., ... & Chang, W. (2022). DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Research, 50(W1), W216-W221. https://doi.org/10.1093/nar/gkac194 Sun, J., Ye, M., Peng, S., & Li, Y. (2016). Nitrogen can improve the rapid response of photosynthesis to changing irradiance in rice (Oryza sativa L.) plants. Scientific Reports, 6(1), 31305. https://doi.org/10.1038/srep31305 Sun, L., Di, D. W., Li, G., Li, Y., Kronzucker, H. J., & Shi, W. (2020). Transcriptome analysis of rice (Oryza sativa L.) in response to ammonium resupply reveals the involvement of phytohormone signaling and the transcription factor OsJAZ9 in reprogramming of nitrogen uptake and metabolism. Journal of Plant Physiology, 246, 153137. https://doi.org/10.1016/j.jplph.2020.153137 Tabuchi, M., Abiko, T., & Yamaya, T. (2007). Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental Botany, 58(9), 2319-2327. https://doi.org/10.1093/jxb/erm016 Tantray, A. Y., Bashir, S. S., & Ahmad, A. (2020). Low nitrogen stress regulates chlorophyll fluorescence in coordination with photosynthesis and Rubisco efficiency of rice. Physiology and Molecular Biology of Plants, 26, 83-94. https://doi.org/10.1007/s12298-019-00721-0 Ueda, Y., Ohtsuki, N., Kadota, K., Tezuka, A., Nagano, A. J., Kadowaki, T., ... & Yanagisawa, S. (2020). Gene regulatory network and its constituent transcription factors that control nitrogen‐deficiency responses in rice. New Phytologist, 227(5), 1434-1452. https://doi.org/10.1111/nph.16627 Varotto, C., Maiwald, D., Pesaresi, P., Jahns, P., Salamini, F., & Leister, D. (2002). The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. The Plant Journal, 31(5), 589-599. https://doi.org/10.1046/j.1365-313X.2002.01381.x Wairich, A., de Oliveira, B. H. N., Arend, E. B., Duarte, G. L., Ponte, L. R., Sperotto, R. A., ... & Fett, J. P. (2019). The combined strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa). Scientific Reports, 9(1), 16144. https://doi.org/10.1038/s41598-019-52502-0 Wang, D., Xu, T., Yin, Z., Wu, W., Geng, H., Li, L., ... & Lian, X. (2020). Overexpression of OsMYB305 in rice enhances the nitrogen uptake under low-nitrogen condition. Frontiers in plant science, 11, 369. https://doi.org/10.3389/fpls.2020.00369 Wang, F., Wang, Y., Ying, L., Lu, H., Liu, Y., Liu, Y., ... & Mao, C. (2023). Integrated transcriptomic analysis identifies coordinated responses to nitrogen and phosphate deficiency in rice. Frontiers in Plant Science, 14, 1164441. https://doi.org/10.3389/fpls.2023.1164441 Wang, L., Xie, W., Chen, Y., Tang, W., Yang, J., Ye, R., ... & Zhang, Q. (2010). A dynamic gene expression atlas covering the entire life cycle of rice. The Plant Journal, 61(5), 752-766. https://doi.org/10.1111/j.1365-313X.2009.04100.x Wang, Y., Wang, D., Tao, Z., Yang, Y., Gao, Z., Zhao, G., & Chang, X. (2021). Impacts of nitrogen deficiency on wheat (Triticum aestivum L.) grain during the medium filling stage: transcriptomic and metabolomic comparisons. Frontiers in Plant Science, 12, 674433. https://doi.org/10.3389/fpls.2021.674433 Wang, Y., Zhang, P., Li, M., Guo, Z., Ullah, S., Rui, Y., & Lynch, I. (2020). Alleviation of nitrogen stress in rice (Oryza sativa) by ceria nanoparticles. Environmental Science: Nano, 7(10), 2930-2940. https://doi.org/10.1039/D0EN00757A Wen, B., Li, C., Fu, X., Li, D., Li, L., Chen, X., ... & Gao, D. (2019). Effects of nitrate deficiency on nitrate assimilation and chlorophyll synthesis of detached apple leaves. Plant Physiology and Biochemistry, 142, 363-371. https://doi.org/10.1016/j.plaphy.2019.07.007 Yang, S. Y., Hao, D. L., Song, Z. Z., Yang, G. Z., Wang, L., & Su, Y. H. (2015). RNA-Seq analysis of differentially expressed genes in rice under varied nitrogen supplies. Gene, 555(2), 305-317. http://dx.doi.org/10.1016/j.gene.2014.11.021 Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R. Y., ... & Margalit, H. (2004). Network motifs in integrated cellular networks of transcription–regulation and protein–protein interaction. Proceedings of the National Academy of Sciences, 101(16), 5934-5939. https://doi.org/10.1073/pnas.0306752101 Zakari, S. A., Asad, M. A. U., Han, Z., Zhao, Q., & Cheng, F. (2020). Relationship of nitrogen deficiency-induced leaf senescence with ROS generation and ABA concentration in rice flag leaves. Journal of Plant Growth Regulation, 39, 1503-1517. https://doi.org/10.1007/s00344-020-10128-x