Akbudak, M. A., Filiz, E., Vatansever, R., & Kontbay, K. (2018). Genome-wide identification and expression profling of ascorbate peroxidase (APX) and glutathione peroxidase (GPX) genes under drought stress in sorghum (Sorghum bicolor L.). Journal of Plant Growth Regulation, 37, 925-936. https://doi.org/10.1007/s00344-018-9788-9.
Aleem, M., Aleem, S., Sharif, I., Aleem, M., Shahzad, R., Khan, M. I., Batool, A., Sarwar, G., Farooq, J., Iqbal, A., Jan, B. L., Kaushik, P., Feng, X., Bhat, J. A., & Ahmad, P. (2022). Whole-genome identification of APX and CAT gene families in cultivated and wild soybeans and their regulatory function in plant development and stress response, Antioxidants, 11, 1626. https://doi.org/10.3390/antiox11081626.
Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., De Castro, E., Duvaud, S., Flegal, V., Fortier, A., Gasteiger, E., & Grosdidier, A. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40 (W1), W597-W603. https://doi.org/10.1093/nar/gks400.
Bakir, M., & Yildirim, C. (2022). Isolation of ascorbate peroxidase (APX) gene in lentil (Lens culinaris Medik.) and expression analysis under drought stress conditions. Ege Universitesi Ziraat Fakultesi Dergisi, 59 (3), 439-447, https://doi.org/10.20289/zfdergi.1007041
Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35 (4), 1011-1019. https://doi.org/10.1590/s1415-47572012000600016.
Chen, C., Chen, H., He, Y., & Xia, R. (2018). TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. bioRxiv, 289660. http://dx.doi.org/10.1016/j.molp.2020.06.009.
Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11, 163. https://doi.org/10.1186/1471-2229-11-163.
Dibb, N. J., & Newman, A. J. (1989). Evidence that introns arose at proto-splice sites. EMBO Journal, 8, 2015-2021. https://doi.org/10.1002/j.1460-2075.1989.tb03609.x.
Fedorov, A., Suboch, G., Bujakov, M., & Fedorova, L. (1992). Analysis of nonuniformity in intron phase distribution. Nucleic Acids Research, 20, 2553–2557. https://doi.org/10.1093/nar/20.10.2553.
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39 (4), 783-791. https://doi.org/10.2307/2408678.
Filiz, E., Ozyigit, I. I., Saracoglu, I. A., Uras, M. E., Sen, U., & Yalcin, B. (2019). Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evaluation. Biotechnology and Biotechnological Equipment, 33 (1), 128-143. https://doi.org/10.1080/13102818.2018.1556120
Gangwar, S., Singh, V. P., Tripathi, D. K., Chauhan, D. K., Prasad, S. M., & Maurya, J. N. (2014). Plant responses to metal stress: the emerging role of plant growth hormones in toxicity alleviation. In: Ahmad, P., & Rasool, S (Eds.). Emerging technologies and management of crop stress tolerance. Academic Press, 215-248. https://doi.org/10.1016/B978-0-12-800875-1.00010-7.
He, M., He, C. Q., & Ding, N. Z. (2018). Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Frontiers in Plant Science, 9, 1771. https://doi.org/10.3389/fpls.2018.01771.
Jena, J., Sahoo, S. K & Dash, G. K. (2020). An introduction to abiotic stress in plants. In: Advances in agronomy. 9, 163-186, AkiNik Publications, New Delhi. https://doi.org/10.22271/ed.book.725.
Krishnatreya, D. B., Baruah, P. M., Dowarah, B., Chowrasia, S., Mondal, T. K., & Agarwala, N. (2021). Genome-wide identification, evolutionary relationship and expression analysis of AGO, DCL and RDR family genes in tea. Scientific Reports, 11, 8679, https://doi.org/10.1038/s41598-021-87991-5.
Kumar, S., Stecher G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7), 1870-1874. https://doi.org/10.1093/molbev/msw054.
Leng, X., Wang, H., Zhang, S., Qu, C., Yang, C., Xu, Z., & Liu, G. (2021). Identification and characterization of the APX gene family and its expression pattern under phytohormone treatment and abiotic stress in Populus trichocarpa. Genes, 12 (3), 334. https://doi.org/10.3390/genes12030334.
Leonardis, S. D., Dipierro, N., & Dipierro, S. (2000). Purification and characterization of an ascorbate peroxidase from potato tuber mitochondria. Plant Physiology and Biochemistry, 38 (10), 773-779. https://doi.org/10.1016/S0981-9428(00)01188-8.
Letunic, I., Doerks, T., & Bork, P. (2012). SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Research, 40 (D1), D302-D305. https://doi.org/10.1093/nar/gkr931.
Liao, G. L., Liu, Q., Li, Y. Q., Zhong, M., Huang, C. H., Jia, D. F., & Xu, X. B. (2020). Identification and expression profiling analysis of ascorbate peroxidase gene family in Actinidia chinensis (Hongyang). Journal of Plant Research, 133 (5), 715-726. https://doi.org/10.1007/s10265-020-01206-y.
Long, M., de Souza, S. J., Rosenberg, C., & Gilbert, W. (1998). Relationship between proto-splice sites and intron phases: evidence from dicodon analysis. Proceedings of the National Academy of Sciences of the USA, 95, 219-223. https://doi.org/10.1073/pnas.95.1.219.
Lu, Z., Takano, T., & Liu, S. (2005). Purification and characterization of two ascorbate peroxidases of rice (Oryza sativa L.) expressed in Escherichia coli. Biotechnology Letters, 27 (1), 63-67. https://doi.org/10.1007/s10529-004-6587-0.
Najami, N., Janda, T. Barriah, W. Kayam, G. Tal, M. Guy M., & Volokita. M. (2008). Ascorbate peroxidase gene family in tomato: its identification and characterization. Molecular Genetics and Genomics, 279, 171-182. https://doi.org/10.1007/s00438-007-0305-2.
Narendra, S., Venkataramani, S., Shen, G. X., Wang, J., Pasapula, V., Lin, Y., Kornyeyev, D., Holaday, A. S., & Zhang, H. (2006). The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. Journal of Experimental Botany, 57, 3033-3042. https://doi.org/10.1093/jxb/erl060.
Panchuk, I. I., Volkov R. A., & Schoeffl. F. (2002). Heat stress and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology, 129, 838-853. https://doi.org/10.1104/pp.001362.
Qu, C., Wang, L., Zhao, Y., & Liu, C. (2020). Molecular evolution of maize ascorbate peroxidase genes and their functional divergence. Genes (Basel), 11 (10), 1204. https://doi.org/10.3390/genes11101204.
Raza, A., Sharif, Y., Chen, K., Wang, L., Fu, H., Zhuang, Y., Chitikineni, A., Chen, H., Zhang, C., Varshney, R. K., & Zhuang, W. (2022). Genome-wide characterization of ascorbate peroxidase gene family in peanut (Arachis hypogea L.) revealed their crucial role in growth and multiple stress tolerance. Frontiers in Plant Science, 13, 962182. https://doi.org/10.3389/fpls.2022.962182.
Roy, S. W. (2003). Recent evidence for the exon theory of genes. Genetica, 118, 251-266. https://doi.org/10.1023/A:1024190617462. Roy, S. W., Fedorov, A., & Gilbert, W. (2003). Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. Proceedings of the National Academy of Sciences of the USA, 100, 7158-7162. https://doi.org/10.1073/pnas.1232297100.
Samynathan, R., Shanmugam, K., Nagarajan, C., Murugasamy, H., Ilango, R. V. J., Shanmugam, A., Venkidasamy, B., & Thiruvengadam, M. (2021). The effect of abiotic and biotic stresses on the production of bioactive compounds in tea (Camellia sinensis (L.) O. Kuntze). Plant Gene, 27, 100316. https://doi.org/10.1016/j.plgene.2021.100316
Scandalios, J. G. (2005). Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38, 995-1014. https://doi.org/10.1590/S0100-879X2005000700003.
Szabo, S., Yoshida, M., Filakovszky, J., & Juhasz, G. (2017). "Stress" is 80 years old: from Hans Selye original paper in 1936 to recent advances in GI ulceration. Current Pharmaceutical Design, 23 (27), 4029-4041. https://doi.org/10.2174/1381612823666170622110046.
Shi, J., Ma, C., Qi, D., Lv, H., Yang, T., Peng, Q., Chen, Z., & Lin, Z. (2015). Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves. BMC Plant Biology, 15, 233. https://doi.org/10.1186/s12870-015-0609-z.
Shoeva, O. Y., Glagoleva, A. Y., & Khlestkina, E. K. (2017). The factors affecting the evolution of the anthocyanin biosynthesis pathway genes in monocot and dicot plant species. BMC Plant Biology, 17 (Suppl 2), 256. https://doi.org/10.1186/s12870-017-1190-4.
Sorek, R. (2007). The birth of new exons: mechanisms and evolutionary consequences. RNA, 13 (10), 1603-1608. https://doi.org/10.1261/rna.682507.
Tao, C. C., Jin, X., Zhu, L. P., Xie, Q. L., Wang, X. C., & Li, H. B. (2018a). Genome-wide investigation and expression profiling of APX gene family in Gossypium hirsutum provide new insights in redox homeostasis maintenance during different fiber development stages. Molecular Genetics and Genomics, 293, 685-697. https://doi.org/10.1007/s00438-017-1413-2.
Tao, J. J., Wu, H., Li, Z. Y., Huang, C. H., & Xu, X. B. (2018b). Molecular evolution of GDP-d-mannose epimerase (GME) a key gene in plant ascorbic acid biosynthesis. Frontiers in Plant Science, 9, 1293. https://doi.org/10.3389/fpls.2018.01293.
Teixeira, F. K., Menezes, B. L., Galvão, V. C., Margis R., & Margis, P. M. (2006). Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta, 224, 300-314. https://doi.org/10.1007/s00425-005-0214-8.
Teixeira, F. K., Menezes-Benavente, L., Margis, R., & Margis-Pinheiro, M. (2004). Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. Journal of Molecular Evolution, 59 (6), 761-770. https://doi.org/10.1007/s00239-004-2666-z.
Tyagi, S., Shumayla, P. C. Verma, Singh, K., & Upadhyay, S. K. (2020). Molecular characterization of ascorbate peroxidase (APX) and APX-related (APX-R) genes in Triticum aestivum L. Genomics, 112, 4208-4223. https://doi.org/10.1016/j.ygeno.2020.07.023.
Upadhyaya, H., & Panda, S. K. (2013). Abiotic stress responses in tea [camellia sinensis L (o) Kuntze]: an overview. Reviews in Agricultural Science, 1, 1-10. https://doi.org/10.7831/ras.1.1.
Verma, D., Upadhyay, S. K., & Singh, K. (2022). Characterization of APX and APX-R gene family in Brassica juncea and B. rapa for tolerance against abiotic stresses. Plant Cell Reports, 41, 571-592. https://doi.org/10.1007/s00299-021-02726-0
Wang, X. C., Zhao, Q. Y., Ma, C. L., Zhang, Z. H., Cao, H. L., Kong, Y. M., Yue, C., Hao, X. Y., Chen, L., Ma, J. Q., Jin, J. Q., Li, X., & Yang, Y. J. (2013). Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics, 14, 415. https://doi.org/10.1186/1471-2164-14-415.
Wei, C., Yang, H., Wang, S., Zhao, J., Liu, C., Gao, L., Xia, E., et al, (2018). Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the USA, 115 (18), E4151-E4158. https://doi.org/10.1073/pnas.1719622115.
Xia, E. H., Li, F. D., Tong, W., Li, P. H., Wu, Q., Zhao, H. J., Ge, R. H., Li, R. P., Li, Y. Y., Zhang, Z. Z., Wei, C. L., & Wan, X. C. (2019). Tea plant information archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnology Journal, 17 (10), 1938-1953. https://doi.org/10.1111/pbi.13111.
You, J., & Chan, Z. (2015). ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 6, 1092. https://doi.org/10.3389/fpls.2015.01092.
Yu, C. S., Cheng, C. W., Su, W. C., Chang, K. C., Huang, S. W., Hwang, J. K., & Lu, C. H. (2014). CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One, 9 (6), e99368. https://doi.org/10.1371/journal.pone.0099368.
Zhang, R., Ma, Y., Hu, X., Chen, Y., He, X., Wang, P., Chen, Q., Ho, C. T., Wan, X., Zhang, Y., & Zhang, S. (2020). TeaCoN: A database of gene co-expression network for tea plant (Camellia sinensis). BMC genomics, 21, 461. https://doi.org/10.1186/s12864-020-06839-w.
Zhu, L., Zhang, Y., Zhang, W., Yang, S., Chen, J. Q., & Tian, D. (2009). Patterns of exon-intron architecture variation of genes in eukaryotic genomes. BMC Genomics, 10, 47. https://doi.org/10.1186/1471-2164-10-47
Zhang, Q., Cai, M., Yu, X., Wang, L., Guo, C., Ming, R., & Zhang, J. (2017). Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress. Tree Genetics and Genomes, 13, 1-17. https://doi.org/10.1007/s11295-017-1161-9.