تحلیل پروتئوم ژنوتیپ‌های حساس و مقاوم جو وحشی (‏Hordeum spontaneum‏)‏‎ ‎در‎ ‎پاسخ به ‏تنش خشکی

نوع مقاله : علمی پژوهشی

نویسندگان

1 ‏گروه‎ ‎زراعت‎ ‎و‎ ‎اصلاح‎ ‎نباتات،‎ ‎دانشکده‎ ‎کشاورزی،‎ ‎دانشگاه‎ ‎ایلام، ایلام،‎ ‎ایران.

2 ‏ ‎گروه زراعت و اصلاح نباتات دانشکده ‏کشاورزی دانشگاه شاهد، تهران، ایران.

3 ‏بخش‎ ‎تحقیقات‎ ‎جنگلها‎ ‎و‎ ‎مراتع،‎ ‎مرکز‎ ‎تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی ‏(‏AREEO‏)، کرمانشاه، ایران.

4 ‏ ‎ ‎گروه‎ ‎زراعت‎ ‎و‎ ‎اصلاح‎ ‎نباتات،‎ ‎دانشکده‎ ‎کشاورزی،‎ ‎دانشگاه‎ ‎ایلام، ایلام،‎ ‎ایران.

5 ‎گروه‎ ‎کشاورزی‎ ‎دانشگاه‎ ‎پیام‎ ‎نور،‎ ‎تهران،‎ ‎ایران.

چکیده

جو وحشی (Hordeum spontaneum) نقشی اساسی در افزایش مقاومت به خشکی در ارقام جو را ایفا می‌کند. تنوع ژنتیکی ژنوتیپ‌های جو وحشی در ایران نشان از برتری آن‌ها در تحمل خشکی و ویژگی‌های زراعی دارد. مطالعات پروتئومی مسیرهای مهم درگیر در پاسخ به تنش‌های گیاهی را شناسایی می‌کنند و مسیر ایجاد ارقام مقاوم به خشکی را هموار می‌سازند. در این پژوهش، با استفاده از داده‌های عملکرد دانه 114 ژنوتیپ جو وحشی در دو شرایط دیم و آبی، طی دو سال زراعی (1398-1399 و 1399-1400) و شاخص STS، ژنوتیپ‌های مقاوم و حساس به خشکی شناسایی شدند. آزمایش در دو شرایط فاقد تنش خشکی و تنش خشکی شدید انجام شد و ژنوتیپ‌های مختلف بررسی شدند. پس از رشد گیاهچه‌ها، شرایط تنش خشکی در مرحله دو برگی و بر اساس ظرفیت زراعی خاک (FC) با دو سطح 90-95 درصد و 25-30 ظرفیت زراعی خاک اعمال شد. پس از استخراج پروتئین، در بعد اول از IPG با pH 3-10 و 13 سانتی‌متر و در بعد دوم از ژل پلی اکریل آمید 14 درصد استفاده شد. نتایج الکتروفورز دو بعدی نشان داد که 224 نقطه پروتئینی تکرارپذیر بودند. در ژنوتیپ مقاوم 32 لکه و در ژنوتیپ حساس 29 لکه با تغییرات معنی‌دار شناسایی شدند. ژنوتیپ مقاوم 22 لکه با افزایش بیان و 10 لکه با کاهش بیان داشت، در حالی که ژنوتیپ حساس 16 لکه با افزایش بیان و 13 لکه با کاهش بیان نشان داد. برخی از لکه‌ها (8 لکه) بیان مشترک داشتند. نتایج این پژوهش نشان می‌دهد که پروتئین‌های مختلفی در پاسخ به تنش خشکی در ژنوتیپ‌های مقاوم و حساس به‌طور متفاوتی بیان می‌شوند که نشان‌دهنده استراتژی‌های مختلف گیاهان برای مقابله با تنش‌های محیطی است

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Proteome analysis of susceptible and resistant genotypes of wild barley (Hordeum spontaneum) in response to drought stress

نویسندگان [English]

  • Hooman Shirvani 1
  • Ali Mehrabi 2
  • Mohsen Farshadfar 3
  • Hooshmand Safari 3
  • Ali Arminian 4
  • Foad Fatehi 5
1 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ilam University, Iran.
2 Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, Shahed University, Tehran, Iran.
3 Forests and Rangelands Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kermanshah, Iran.
4 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ilam University, Iran.
5 Department of Agriculture, Payame Noor University, Tehran, Iran.
چکیده [English]

The wild barley (Hordeum spontaneum) plays a crucial role in enhancing drought resistance in cultivated barley varieties. The genetic diversity of wild barley genotypes in Iran indicates their superiority in drought tolerance and agronomic traits. Proteomic studies help identify key pathways involved in plant stress responses and facilitate the development of drought-resistant cultivars. In this research, based on the grain yield data of 114 wild barley genotypes under both rainfed and irrigated conditions over two agricultural years (2019-2020 and 2020-2021) and using the STS index, drought-resistant and sensitive genotypes were identified. The experiment was conducted under two conditions: absence of drought stress and severe drought stress, with various genotypes examined. After seedling growth, drought stress was applied at the two-leaf stage, based on soil field capacity (FC), at two levels: 90-95% and 25-30% of field capacity. Following protein extraction, IPG strips with pH 3-10 and 13 cm in length were used for the first dimension, while 14% polyacrylamide gel was used for the second dimension. Results from two-dimensional electrophoresis showed that 224 protein spots were reproducible. In the drought-resistant genotype, 32 spots and in the sensitive genotype, 29 spots exhibited significant changes. The resistant genotype had 22 spots with increased expression and 10 with decreased expression, while the sensitive genotype had 16 spots with increased expression and 13 with decreased expression. Eight spots showed shared expression. These results indicate that various proteins are differentially expressed in response to drought stress in resistant and sensitive genotypes, highlighting the diverse strategies of plants in coping with environmental stresses.

کلیدواژه‌ها [English]

  • Isoelectric focusing
  • Two-dimensional electrophoresis
  • Proteomics
  • STS index
Abdolshahi, R., Safarian, A., Nazari, M., Pourseyedi, S., & Mohamadi-Nejad, G. (2013). Screening drought-tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods. Archives of Agronomy and Soil Science, 59(5), 685-704. (in Farsi). Ashoub, A., Beckhaus, T., Berberich, T., Karas, M., & Brüggemann, W. (2013). Comparative analysis of barley leaf proteome as affected by drought stress. Planta, 237, 771-781. Bauder, J. (2002). When necessary, Just-in-time, irrigating can save water. MSU Extension Publications. 406-994-3273. Berauer, B. J., Steppuhn, A., & Schweiger, A. H. (2024). The multidimensionality of plant drought stress: The relative importance of edaphic and atmospheric drought. Plant, Cell & Environment, 47(9), 3528-3540. Blum, A. (2010). Plant breeding for water-limited environments. Springer Science & Business Media. Boustani, A., Fatehi, F., & Azizinezhad, R. (2018). Study on leaf proteome response of H. marinum to salinity stress. Modern Genetics Scientific Quarterly, 13(1), 143-155. (in Farsi). Fatehi, F., Hosseinzadeh, A. Alizadeh, H. Haji Abbasi, M., & Shabani. A. (2011). Studying the response of barley leaf proteome under salinity stress conditions. Iranian Plant Sciences, 42(3): 617-626. (in Farsi). Fatehi, F., Hosseinzadeh, A., Alizadeh, H., Brimavandi, T., & Struik, P. C. (2012). The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Molecular Biology Reports, 39, 6387-6397. Feiziasl, V., Jafarzadeh, J., Ahmed, A. M. R. I., Ansari, Y., Mousavi, S. B., & Chenar, M. A. (2010). Analysis of yield stability of wheat genotypes using new Crop Properties Balance Index (CPBI) method. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 228-233. Gusain, S., Kumari, K., & Joshi, R. (2024). Physiological, hormonal and molecular dynamics of root system architectural response to drought stress signaling in crops. Rhizosphere, 100922. Gygi, S. P., Rist, B., & Aebersold, R. (2000). Measuring gene expression by quantitative proteome analysis. Current opinion in biotechnology, 11(4), 396-401. Hayes, P. M., Castro, A., Marquez-Cedillo, L., Corey, A., Henson, C., Jones, B. L., ... & Sato, K. (2003). Genetic diversity for quantitatively inherited agronomic and malting quality traits. In Developments in plant genetics and breeding (Vol. 7, pp. 201-226). Elsevier. Heidarvand, L. (2012). Evaluation of chickpea proteome in early stages of cold. Ph. D thesis in plant breeding. University of Tehran. (In Farsi). Joseph, B., & Jini, D. (2010). Proteomic analysis of salinity stress-responsive proteins in plants. Asian Journal of Plant Sciences, 9(6), 307. Keshavarznia, R. (2013). Investigating the effect of drought stress on physiological traits and expression pattern of proteins in barley. Master's thesis. Faculty of Agriculture, University of Tehran. (in Farsi). Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature, 227(5259), 680-685. Liu, D. (2023) Barley: From Molecular Basis of Quality to Advanced Genomics-Based Breeding. In Compendium of Crop Genome Designing for Nutraceuticals (pp. 1-38). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-3627-2_4-1 Lukinac, J., & Jukić, M. (2022). Barley in the production of cereal-based products. Plants 2022, 11, 3519. Mechin, V., Consoli, L., Le Guilloux, M., & Damerval, C. (2003). An efficient solubilization buffer for plant proteins focused in immobilized pH gradients. PROTEOMICS: International Edition, 3(7), 1299-1302. Meng, G., Rasmussen, S. K., Christensen, C. S., Fan, W., & Torp, A. M. (2023). Molecular breeding of barley for quality traits and resilience to climate change. Frontiers in Genetics, 13, 1039996. Mitra, J. (2001). Genetics and genetic improvement of drought resistance in crop plants. Current Science 80: 758-763 Møller, A. L., Pedas, P. A. I., Andersen, B., Svensson, B., Schjoerring, J. K., & Finnie, C. (2011). Responses of barley root and shoot proteomes to long‐term nitrogen deficiency, short‐term nitrogen starvation and ammonium. Plant, cell & environment, 34(12), 2024-2037. Moloi, S. J., & Ngara, R. (2023). The roles of plant proteases and protease inhibitors in drought response: a review. Frontiers in Plant Science, 14, 1165845. Morrel, P. L. (2011). Hordeum. pp. 309-320, In: C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources, Nevo, E., & Chen, G. (2010). Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, cell & environment, 33(4), 670-685. Raj, R., Shams, R., Pandey, V. K., Dash, K. K., Singh, P., & Bashir, O. (2023). Barley phytochemicals and health promoting benefits: A comprehensive review. Journal of Agriculture and Food Research, 14, 100677. Rasul Nia, A., Bi Hamta, m., Peighambari, S., Alizadeh, H., Teklo, S., & Mujahid.K. (2013). Investigating the proteome pattern and activity of some antioxidant enzymes of barley under salinity stress. Iranian Plant Sciences, 43(2), 231-241. (in Farsi). Richard, A.J., & Dean, W.W. (2002). Applied multivariate statistical analysis. Prenticee Hall, London. 265. Sanchez, J. C., & Hochstrasser, D. F. (1999). High-resolution, IPG-based, mini two-dimensional gel electrophoresis (pp. 227-233). Humana Press. Sardouie‐Nasab, S., Mohammadi‐Nejad, G., & Nakhoda, B. (2014). Field screening of salinity tolerance in Iranian bread wheat lines. Crop Science, 54(4), 1489-1496. Seem, K., Kaur, S., Selvan, T., & Kumar, S. (2024). Plant response to drought stress: epigenomic perspective. In Current Omics Advancement in Plant Abiotic Stress Biology (pp. 323-341). Academic Press. Shirvani, H., Mehrabi, A. A., Farshadfar, M., Safari, H., Arminian, A., Fatehi, F., ... & Poczai, P. (2024). Investigation of the morphological, physiological, biochemical, and catabolic characteristics and gene expression under drought stress in tolerant and sensitive genotypes of wild barley [Hordeum vulgare subsp. spontaneum (K. Koch) Asch. & Graebn.]. BMC Plant Biology, 24(1), 214. Taheri, H., Bi Hamta, M. Hosseinzadeh, A. Naqvi, M., & March, T. (2013). Investigation of proteome response to drought stress in barley plant (Hordeum vulgare L.) using DIGE technology. Modern Genetics Scientific Quarterly,7(3). (In Farsi). Wang, N., Zhao, J., He, X., Sun, H., Zhang, G., & Wu, F. (2015). Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. BMC genomics, 16, 1-19. Zhu, J. K. (2001). Plant salt tolerance. Trends in plant science, 6(2), 66-71.