تجزیه پروتئوم ریشه گندم رقم باران تحت تنش کمبود آب

نوع مقاله : علمی پژوهشی

نویسندگان

1 مستقل

2 استاد گروه به نژادی و بیوتکنولوژی گیاهی، دانشکده کشاورزی دانشگاه تبریز، تبریز، ایران

3 موسسه تحقیقات کشاورزی دیم کشور

10.30473/cb.2024.71391.1970

چکیده

غلات، بخصوص گندم یکی از مهمترین منابع غذایی انسان است و کمبود آب عامل محدودکننده‌ی مهمی در تولید گندم محسوب می‌شود. بنابراین تطابق آن با تنش خشکی، برای افزایش تولید حیاتی است. در این پژوهش ریشه‌ی گندم رقم باران که رقمی متحمل به کمبود آب است، برای بررسی صفات فیزیولوزیکی و تغییرات الگوی بیان پروتئینی، تحت تنش کمبود آب، مورد بررسی قرار گرفت. برای اجرای آزمایش از طرح کاملأ تصادفی در ده تکرار استفاده شد. 20 روز پس از اعمال تنش، صفات طول اندام هوایی و ریشه، وزن تر و خشک، حجم ریشه و محتوای پرولین ریشه در هر دو شرایط شاهد و تنش کمبود آب اندازه‌گیری شدند. استخراج پروتئین ریشه به روش بافر فسفات انجام و الکتروفورز دو بعدی در بعد اول به روش IEF و بعد دوم به روش PAGE SDS- انجام گردید. تجزیه پروتئوم ریشه از طریق الکتروفورز دو بعدی با رنگ آمیزی آبی کوماسی باعث شناسایی 99 لکه پروتئینی تکرار پذیر در هر ژل گردید. 15 لکه دارای تغییر بیان معنی دار در شرایط تنش کمبود آب نسبت به شاهد شناسایی گردید که 13 لکه افزایش بیان و 2 لکه کاهش بیان داشتند. لکه‌های پروتئینی با تغییر بیان معنی‌دار با توجه به نقطه ایزوالکتریک و وزن مولکولی در نرم افزار PDQuest برچسب زده شده و به روش طیف سنجی جرمی شناسایی شدند. این پروتئین‌ها در گروه‌های عملکردی، سنتز نشاسته، تنفس نوری و متابولیسم، پروتئین‌های درگیر در ساختار سلولی، پاسخ و دفاع در برابر تنش و سایر طبقه بندی شدند. پروتئین‌های اس-آدنوزیل متیونین سنتتاز-3 و پروتئین شبه جرمین تحت تاثیر تنش کمبود آب کاهش بیان و پروتئین‌های پراکسیداز، ،فسفوگلیسرات موتاز، تریوز فسفات-ایزومراز، آدنوزین دی فسفات گلوکز پیروفسفوریلاز، گلوتاتیون اس-ترنسفراز، مونومریک-آلفا آمیلاز اینهیبیتور، 3-‌فسفوگلیسرات‌کیناز سیتوسولی، زیر واحد بتا کانال پتاسیم حساس به ولتاژ، سرین هیدروکسی‌متیل ترنسفراز، پروتئین‌های فراوان اواخر جنین زایی D-29 ، بتا-هیدروکسی ایزو‌بوتیل-کوا هیدرولاز و 2- سیس پروکسی‌ردوکسینه BAS1 و سایر پروتئین‌های فراوان اواخر جنین زایی افزایش بیان نشان دادند. نتایج این پژوهشنشان داد که گروه‌های متفاوتی از پروتئین‌ها در کاهش اثرهای مخرب حاصل از تنش کمبود آب دخیل می باشند ولی سهم پروتئین های پاسخ/ دفاع در برابر تنش و متابولیسم بیش از سایر گروه ها می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Proteome analysis of root in wheat (Triticum aestivum cv. Baran) ‎under water deficit stress

نویسندگان [English]

  • Sayna Toraby 1
  • Mahmoud toorchi 2
  • Mozaffar Roostaei 3
1 Independent
2 Prof. of the Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tabriz University, Tabriz, Iran
3 Dryland Agricultural Research Institute (DARI)
چکیده [English]

Cereals, especially wheat, is one of the most important food sources for humans. Approximately 55% of proteins, 15% of fats, 70% of glucosides, and generally 50-55% of calories consumed by human come from cereals. Water scarcity is an important limiting factor in wheat production in rainfed and irrigated farming can affect different traits. Therefore, adaptation of plants to drought stress is critical to increase production. Many factors such as genotype, growth stage, intensity and duration of stress, physiological growth stage, different patterns of gene expression and environmental factors can influence the response of plants to drought stress. Different methods have been used to study the expression of genes, and proteomic analysis has priority for the study of the final gene product. In this regard, the seeds of wheat cultivars were gown in plastic pots in a greenhouse and divided into two and root random groups one month after growing in which water deficit stress was imposed to half of the pot, randomly, by increment of irrigation internal. Twenty days after imposing stress, shoot and root length, shoot dry and wet weight, root volume and proline content were measured in both groups. Protein extraction was performed by phosphate buffer method and two-dimensional electrophoresis was performed by IEF in 1st dimension and SDS-PAGE in 2nd dimension. Proteomic analysis of root tissue by two-dimensional electrophoresis with Coomassie brilliant blue staining revealed 99 repeatable protein spots each gel. Among the identified protein spots, 15 spots were shown a significant change in expression under water deficit stress condition compared with the control, in such a way 13 spots increased expression and 2 spots with reduced expression. These spots were identified according to the isoelectric point and the molecular weight. These proteins based on functional groups were classified in starch synthesis, light respiration and metabolism, proteins involved in cell structure, stress response and defense, and various proteins. Proteins Peroxidase, Phosphoglycerate mutase, Triose phosphate-isomerase, Adenosine diphosphate glucose pyrophosphorylase, Glutathione S-transferase, Monomeric alpha-amylase inhibitor, Cytosolic-3-phosphoglycerate kinase, Probable voltage-gated potassium channel subunit beta, Serine hydroxy methyltransferase, late embryogenesis abundant protein D-29, β-Hydroxyisobutyryl-CoA hydrolase, 2-Cys peroxiredoxin BAS1 and other late embryogenesis abundant proteins were identified with increased changed expression under water deficit stress conditions indicating the importance of these proteins in reducing the effects of water deficit stress. The proteins S-Adenosylmethionine synthetase 3 and Germin-Like protein were shown reduced changed expression. The result of this research indicated that different groups of proteins interfering in reduction of destructive effects of water deficiency stress but the contribution of response / defense and metabolism proteins were more than the others.

کلیدواژه‌ها [English]

  • Iso-electric focusing (IEF)
  • Mass spectrometry
  • SDS-PAGE
  • Two-dimensional electrophoresis
Ahmed, M., Fayyaz, H., Ghulam, Q., Farid, A.S., & Muhammad, A.A. (2017). Response of proline accumulation in bread wheat (Triticum aestivum L.) under rainfed conditions. Journal of Agricultural Meteorology, D-14-00047. Ashoub, A., Beckhaus, T., Berberich, T., Karas, M., & Bruggemann, W. (2013). Comparative analysis of barley leaf proteome as affected by drought stress. Planta, 237, 771-81. Balan, D., Tokas, J., & Singal, H.R. (2018). UDP-glucose pyrophosphorylase, Isolation, purification and characterization from developing thermotolerant wheat (Triticum aestivum) grains. Protein Expression and Purification, 148, 68-77. doi: 10.1016/j.pep.2018.04.007. Banaei-Asl, F., Bandehagh, A., Dorani, E. Farajzadeh, D. Sakata, K., Mustafa, G., & Komatsu, S. (2015). Proteomic analysis of canola root inoculated with bacteria under salt stress. Journal of Proteomics, 124, 88-111. Bates, L. S., Waldren, R. P., & Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-07. Bazargani, M.M., Sarhadi, E., Bushehri, A.A., Matros, A., Mock, H.P., Naghavi, M.R., Hajihoseini, V. et al. (2011). A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. Journal of Proteomics, 74(10), 1959-73. Boehlein, S. K., Sewell, A.K. Cross, J., Stewart, J. D., & Hannah, L. C. (2005). Purification and characterization of adenosine diphosphate glucose pyrophosphorylase from maize/potato mosaics. Plant Physiology, 138(3), 1552-62. doi: 10.1104/pp.105.060699. Bogeat-Triboulot, M. B., Brosché, M., Renaut, J., Jouve, L., Le Thiec, D., Fayyaz, P., Vinocur, B., Witters, E., Laukens, K., Teichmann, T., Altman, A., Hausman, J.F., Polle, A., Kangasjärvi, J., & Dreyer E. (2007). Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiology, 143(2), 876-92. doi: 10.1104/pp.106.088708. Bonhomme, L., Valot, B., Tardieu, F., & Zivy, M. (2012). Phosphoproteome dynamics upon changes in plant water status reveal early events associated with rapid growth adjustment in maize leaves. Molecular and Cellular Proteomics, 11(10), 957-72. doi: 10.1074/mcp.M111.015867. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-54. doi: 10.1006/abio.1976.9999. Caruso, G., Cavaliere, C., Foglia, P., Gubbiotti, R., Samperi, R., & Laganà. A. (2009). Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Science, 177, 570-76. Chitteti, B. R., & Peng, Z. (2007). Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. Journal of Proteome Research, 6, 1718-27. doi: 10.1021/pr060678z. Dixon, D. P., Lapthorn, A., & Edwards, R. (2002). Plant glutathione transferases. Genome Biology, 3, 1-10. doi: 10.1186/gb-2002-3-3-reviews3004. Dombrowski, J.E. (2003). Salt stress activation of wound-related genes in tomato plants. Journal of Plant Physiology, 132(4), 2098-107. doi: 10.1104/pp.102.019927. Droog, F. (1997). Plant glutathione S-transferases, a tale of theta and tau. Plant Growth Regulation, 16, 95-107. doi.org/10.1007/PL00006984. Eklund, H., Gleason, F. K., & Holmgren A. (1991). Structural and functional relations among thioredoxins of different species. Proteins, 11(1), 13-28. doi: 10.1002/prot.340110103. Ford, K.L., Cassin, A., & Bacic, A.F. 2011. Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Frontiers in Plant Science, 2, 44. Ge, P., Ma, C., Wang, S., Gao, L., Li, X., Guo, G., Ma, W. et al. 2012. Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Analytical and Bioanalytical Chemistry, 402(3), 1297-1313. Gibbs, B. F., & Alli, I. (1998). Characterization of a purified α-amylase inhibitor from white kidney beans (Phaseolus vulgaris). Food Research International, 31(3), 217-25. Gucciardo, S., Wisniewski, J. P., Brewin, N.J., & Bornemann, S. (2007). A germin-like protein with superoxide dismutase activity in pea nodules with high protein sequence identity to a putative rhicadhesin receptor. Journal of Experimental Botany, 58(5), 1161-71. doi: 10.1093/jxb/erl282. Guo, L., Ma, F., Wei, F., Fanella, B., Allen, D. K., & Wang, X. (2014). Cytosolic phosphorylating glyceraldehyde-3-phosphate dehydrogenases affect Arabidopsis cellular metabolism and promote seed oil accumulation. The Plant Cell, 26(7), 3023-35. doi: 10.1105/tpc.114.126946. Hajheidari, M. Eivazi, A., Buchanan, B. B., Wong, J. H., Majidi, I., & Salekdeh, G. H. (2007). Proteomics uncovers a role for redox in drought tolerance in wheat. Journal of Proteome Research, 6(4), 1451-60. doi: 10.1021/pr060570j. Hao, P., Zhu, J., Gu, A., Lv, D., Ge, P., Chen, G., Li, X. et al. (2015). An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery. Proteomics, 15(9), 1544-1563. Hashimoto, M., & Komatsu, S. (2007). Proteomic analysis of rice seedlings during cold stress. Proteomics, 7, 1293-302. Holmgren, A. (1979). Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. Journal of Biological Chemistry, 254, 9627-32. Horikawa, S., Sasuga, J., Shimizu, K., Ozasa, H., & Tsukada, K. (1990). Molecular cloning and nucleotide sequence of cDNA encoding the rat kidney S-adenosylmethionine synthetase. Journal of Biological Chemistry, 265, 13683-86. Jiang, Y., Yang, B., Harris, N. S., & Deyholos, M. K. (2007). Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 58, 3591-607. doi: 10.1093/jxb/erm207. Kamal, A. H. M., Kim, K. H., Kwang-Hyun, S., Choi, J. S., Baik, B. K., Tsujimoto, H., Heo, H. Y., Park,C. S., & Woo, S. H. (2010). Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Australian Journal of Crop Science, 4, 196-208. Kamal, A.H.M., Cho, K., Choi, J.-S., Bae, K.-H., Komatsu, S., Uozumi, N., & Woo, S.H. 2013. The wheat chloroplastic proteome. Journal of Proteomics, 93, 326-342. Kang, G., Li, G., Zheng, B., Han, Q., Wang, C., Zhu, Y., & Guo T. (2012). Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.). Biochimica et Biophysica Acta-Proteins, and Proteomics, 1824, 1324-33. doi: 10.1016/j.bbapap.2012.07.012. Kishor, P., Sangam, S., Amrutha, R.N., Sri Laxmi, P., Naidu, K.R., Rao, M., Rao, S., Reddy, K.J., Theriappan, P., & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants, its implications in plant growth and abiotic stress tolerance. Current Science, 88, 424-38. Kosova, K., Vitamvas, P., Prasil, I. T., & Renaut, J. (2011). Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. Journal of Proteomics, 74, 1301-22. doi: 10.1016/j.jprot.2011.02.006. Liu, C.W., Chang, T. S., Hsu, Y.K., Wang, A.Z., Yen, H.C., Wu, Y.P., Wang, C.S., & Lai C.C. (2014). Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Proteomics, 14, 1759-75. doi: 10.1002/pmic.201300276. Lovell, C. R., Przybyla, A., & Ljungdahl, L. G. (1990). Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Biochemistry, 29(24), 5687-94. Membré N, Bernier F, Staiger D, Berna A. (2000). Arabidopsis thaliana germin-like proteins, common and specific features point to a variety of functions. Planta, 211(3), 345-54. Mertens, J., Aliyu, H., & Cowan. D. A. (2018). LEA proteins and the evolution of the WHy domain. Appl. Environ. Microbiol., 84, e00539-18. doi: 10.1128/AEM.00539-18. Michaletti, A., Naghavi, M.R., Toorchi, M., Zolla, L., & Rinalducci, S. (2018). Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Scientific reports, 8(1), 5710. Moons, A., Bauw, G., Prinsen, E., Van Montagu, M and Van Der Straeten, D. (1995). Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiology, 107, 177-86. Mukherjee, K., Choudhury, A. R., Gupta, B., Gupta, S., & Sengupta, D. N. (2006). An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. BMC Plant Biology, 6, 18. doi: 10.1186/1471-2229-6-18. Rocco, M., Tartaglia, M., Izzo, F. P., Varricchio, E., Arena, S., Scaloni, A., & Marra, M. (2019). Comparative proteomic analysis of durum wheat shoots from modern and ancient cultivars. Plant Physiology and Biochemistry, 135, 253-62. Salin, M. L. (1991). Chloroplast and mitochondrial mechanisms for protection against oxygen toxicity. Free Radical Research Communications, 13, 851-58. doi: 10.3109/10715769109145867. Schenk, H., Klein, M., Erdbrügger, W., Dröge, W., & Osthoff, K. S. (1994). Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1. Proceedings of the National Academy of Sciences, USA. 91, 1672-76. Sengupta, D., Kannan, M., & Reddy, A. R. (2011). A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. Planta,233, 1111-27. doi: 10.1007/s00425-011-1365-4. Shi, H., Ye, T., & Chan, Z. (2013). Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. Journal of Proteome Research, 12, 4951-64. doi: 10.1021/pr400479k. Sugimoto, M., & Takeda, K. (2009). Proteomic analysis of specific proteins in the root of salt-tolerant barley. Bioscience, Biotechnology and Biochemistry, 73, 2762-65. doi: 10.1271/bbb.90456. Tanou, G., Job, C., Rajjou, L., Arc, E., Belghazi, M., Diamantidis, G., Molassiotis, M., & Job, D. (2009). Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. The Plant Journal, 60, 795-804. doi: 10.1111/j.1365-313X.2009.04000.x. Toorchi, M., Dolati, M., & Adalatzadeh-Aghdam, S. (2014). Differentially expressed proteins in canola leaf induced by salt stress-a proteomic approach. International Journal of Biosciences, 5, 433-42. Van Dam, N. M., Horn, M., Mareš, M., & Baldwin, I. T. (2001). Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata. Journal of Chemical Ecology, 27, 547-68. Wang, M. C., Peng, Z.Y., Li, C.L., Li, F., Liu, C., & Xia, G.M. (2008). Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics, 8, 1470-89. doi: 10.1002/pmic.200700569. Xiong, J., Sun, Y., Yang, Q., Tian, H., Zhang, H., Liu, Y., & Chen, M. (2017). Proteomic analysis of early salt stress responsive proteins in alfalfa roots and shoots. Proteome Science, 15, 19. doi: 10.1186/s12953-017-0127-z. Yan, S. P., Zhang, Q.Y., Tang, Z. C., Su, W. A., & Sun, W. N. (2006). Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular and Cellular Proteomics 5, 484-96. doi: 10.1074/mcp.M500251-MCP200. Yordanov, I., Velikova, V., & Tsonev, T. (2000). Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 38, 171-86. Zadražnik, T., Hollung, K., Egge-Jacobsen, W., Meglič, V., & Šuštar-Vozlič, J. (2013). Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). Journal of Proteomics, 78, 254-72. doi: 10.1016/j.jprot.2012.09.021. Zang, X., & Komatsu, S. (2007). A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochemistry, 68, 426-37. Zolman, B.K., Monroe-Augustus, M., Thompson, B., Hawes, J. W., Krukenberg, K. A., Matsuda, S. P., & Bartel, B. (2001). chy1, an Arabidopsis mutant with impaired β-oxidation, is defective in a peroxisomal β-hydroxyisobutyryl-CoA hydrolase. Journal of Biological Chemistry, 276, 31037-46. doi: 10.1074/jbc.M104679200.