بررسی ترنسکریپتوم مقایسه‌ای گلرنگ با ‏دانه‌های روغنی به‌منظور شناسایی ژن‌های ‏دخیل در کمیت و کیفیت روغن دانه

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه بیوتکنولوژی کشاورزی، دانشگاه بین‌المللی امام خمینی، قزوین، ایران.

2 استاد، گروه بیوتکنولوژی کشاورزی، دانشگاه بین‌المللی امام خمینی، قزوین، ایران.

3 دانشیار، پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری، تهران، ایران.

4 . پژوهشگر، گروه بیوتکنولوژی و اصلاح ‌نباتات، دانشگاه کشاورزی و منابع طبیعی ساری، ساری، ایران.

10.30473/cb.2025.71265.1968

چکیده

در این مطالعه که برپایه فناوری RNA-Seq و ترنسکریپتومیکس مقایسه‌ای بنا شده، به تجزیه و تحلیل و شناسایی ژن‌های دخیل در رشد و نمو دانه پرداخته شده است. بدین منظور داده‌های ترنسکریپتوم دانه گیاهان روغنی گلرنگ (رقم گلدشت)، کملینا و سویا از پایگاه‌ داده‌های مربوطه استخراج شد. پس از بررسی کیفیت، ویرایش، پاکسازی و سرهم‌بندی مجدد آن‌ها با استفاده از ژنوم مرجع انجام شد. حاشیه‌نویسی ژن‌های درگیر در بیوسنتز اسید چرب دانه توسط شناسایی هومولوگ‌های آرابیدوپسیس و سپس آنالیز بیان افتراقی ژن‌ها (DEG) انجام شد. ژن‌هایی که دارای تفاوت بیان در مراحل نموی دانه بودند شناسایی و بدین ترتیب ژن‌های واجد بیان معنی‌دار و دخیل در مسیرهای متابولیسم و سنتز اسید چرب دانه استخراج شدند. در نهایت ارتباط بین ژن‌ها توسط شبکه پروتئین-پروتئین ترسیم و بر این اساس، ژن‌های FAD2، FATB و ACX4 در مسیر بیوسنتز لیپیدها در مرحله پرشدن و بلوغ موثر شناخته شدند. در این گیاهان در مسیر متابولیسم گلیسرولیپید نیز ژن‌های NPC3، PDAT1 و LPAT1 بین مرحله شروع رشد دانه تا پر شدن دارای تفاوت بیان معنی‌داری بودند. نتایج نشان داد که ژن‌های SDP1 و LPAT5 در مرحله بلوغ نسبت به تشکیل دانه افزایش بیان دارند. در مسیر طویل‌سازی اسید چرب، ژن‌های KCS5 و C86A1، در مسیر تجزیه اسید چرب ژن‌ AIM1 و در مسیر بیوسنتز اسید چرب ژن FABH دارای افزایش بیان در مراحل پرشدن و بلوغ دانه بیان معنی‌داری را نشان دادند. بر اساس شبکه پروتئین-پروتئین و روابط بین ژن‌ها احتمال می‌رود ژن‌های FAD2، FATB و PDAT1 نقش کلیدی در نمو دانه و بیوسنتز روغن دانه داشته باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparative transcriptome analysis of Safflower (Carthamus tinctorius L.) with oilseed crops to identify genes involved in seed oil quantity and quality

نویسندگان [English]

  • Soheil Nahranbad 1
  • Ghasemali Garoosi 2
  • Seyed Mehdi Alavi 3
  • Mohammad Amin Baghery 4
1 M.Sc., Department of Biotechnology, Faculty of Agriculture & Natural Resources, Imam Khomeini International University (IKIU), Qazvin, Iran.
2 Department of Biotechnology, Faculty of Agriculture & Natural Resourses, , Imam Khomeini International University (IKIU)
3 Associate Professor, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
4 Researcher, Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
چکیده [English]

This study aimed to identify genes involved in seed growth and development using RNA-Seq and comparative transcriptomics. For this purpose, the transcriptome data of oilseed plants safflower, camelina, and soybean were extracted from relevant databases. After checking the quality of the data, they were edited, cleaned, and reassembled using the reference genome. Annotation of genes involved in seed fatty acid biosynthesis by identifying Arabidopsis homologs and then analyzing differentially expressed genes (DEGs) was performed. Genes with differential expression during seed development stages were identified, and in this way genes with significant expression and involved in seed fatty acid metabolism and synthesis pathways were extracted. Finally, the relationship between genes was drawn by protein-protein interaction network, and based on this, FAD2, FATB, and ACX4 genes were found to be effective in the lipid biosynthesis pathway during filling and maturation stages. In these plants in the glycerophospholipid metabolism pathway, NPC3, PDAT1, and LPAT1 genes showed significant differential expression during the start of seed growth and seed filling stages. The results showed that SDP1 and LPAT5 genes have an increased expression in the maturation stage compared to seed formation. In the fatty acid elongation pathway, KCS5 and C86A1 genes, in the fatty acid degradation pathway AIM1 gene, and in the fatty acid biosynthesis pathway FABH gene showed significant expression in the seed filling and maturation stages. Based on the protein-protein interaction network and gene relationships, it is likely that FAD2, FATB, and PDAT1 genes play a key role in seed development and oil biosynthesis.

کلیدواژه‌ها [English]

  • bioinformatics
  • comparative transcriptme
  • fatty acids
  • Oilseeds
  • safflower
Abdullah, H. M., Chhikara, S., Akbari, P., Schnell, D. J., Pareek, A., & Dhankher, O. P. (2018). Comparative transcriptome and metabolome analysis suggests bottlenecks that limit seed and oil yields in transgenic Camelina sativa expressing diacylglycerol acyltransferase 1 and glycerol-3-phosphate dehydrogenase. Biotechnol Biofuels, 11, 335. https://doi.org/10.1186/s13068-018-1326-2 Adham, A. R., Zolman, B. K., Millius, A., & Bartel, B. (2005). Mutations in Arabidopsis acyl-CoA oxidase genes reveal distinct and overlapping roles in beta-oxidation. Plant J, 41(6), 859-874. https://doi.org/10.1111/j.1365-313X.2005.02343.x Andhale, R., & Md, S. (2018). Fatty acid profile and quality assessment of safflower (Carthamus tinctorius) oil. 7(2). Arroyo-Caro, J. M., Chileh, T., Kazachkov, M., Zou, J., Alonso, D. L., & García-Maroto, F. (2013). The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds. Plant Sci, 199-200, 29-40. https://doi.org/10.1016/j.plantsci.2012.09.015 Bach, L., Gissot, L., Marion, J., Tellier, F., Moreau, P., Satiat-Jeunemaître, B., Palauqui, J. C., Napier, J. A., & Faure, J. D. (2011). Very-long-chain fatty acids are required for cell plate formation during cytokinesis in Arabidopsis thaliana. J Cell Sci, 124(Pt 19), 3223-3234. https://doi.org/10.1242/jcs.074575 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170 Bonaventure, G., Salas, J. J., Pollard, M. R., & Ohlrogge, J. B. (2003). Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell, 15(4), 1020-1033. https://doi.org/10.1105/tpc.008946 Brown, A. P., Kroon, J. T., Swarbreck, D., Febrer, M., Larson, T. R., Graham, I. A., Caccamo, M., & Slabas, A. R. (2012). Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PLoS One, 7(2), e30100. https://doi.org/10.1371/journal.pone.0030100 Chen, J., Hu, Y., Zhao, T., Huang, C., Chen, J., He, L., Dai, F., Chen, S., Wang, L., Jin, S., & Zhang, T. (2024). Comparative transcriptomic analysis provides insights into the genetic networks regulating oil differential production in oil crops. BMC Biology, 22(1), 110. https://doi.org/10.1186/s12915-024-01909-x Chen, J., Tan, R. K., Guo, X. J., Fu, Z. L., Wang, Z., Zhang, Z. Y., & Tan, X. L. (2015). Transcriptome Analysis Comparison of Lipid Biosynthesis in the Leaves and Developing Seeds of Brassica napus. PLoS One, 10(5), e0126250. https://doi.org/10.1371/journal.pone.0126250 Cochetel, N., Ghan, R., Toups, H. S., Degu, A., Tillett, R. L., Schlauch, K. A., & Cramer, G. R. (2020). Drought tolerance of the grapevine, Vitis champinii cv. Ramsey, is associated with higher photosynthesis and greater transcriptomic responsiveness of abscisic acid biosynthesis and signaling. BMC Plant Biol, 20(1), 55. https://doi.org/10.1186/s12870-019-2012-7 Dar, A. A., Choudhury, A. R., Kancharla, P. K., & Arumugam, N. (2017). The FAD2 Gene in Plants: Occurrence, Regulation, and Role. Front Plant Sci, 8, 1789. https://doi.org/10.3389/fpls.2017.01789 Delker, C., Zolman, B. K., Miersch, O., & Wasternack, C. (2007). Jasmonate biosynthesis in Arabidopsis thaliana requires peroxisomal beta-oxidation enzymes--additional proof by properties of pex6 and aim1. Phytochemistry, 68(12), 1642-1650. https://doi.org/10.1016/j.phytochem.2007.04.024 Dörmann, P., Voelker, T. A., & Ohlrogge, J. B. (2000). Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1. Plant Physiol, 123(2), 637-644. https://doi.org/10.1104/pp.123.2.637 Du, C., Chen, Y., Wang, K., Yang, Z., Zhao, C., Jia, Q., Taylor, D. C., & Zhang, M. (2018). Strong co-suppression impedes an increase in polyunsaturated fatty acids in seeds overexpressing FAD2. Journal of Experimental Botany, 70(3), 985-994. https://doi.org/10.1093/jxb/ery378 Eastmond, P. J. (2006). SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell, 18(3), 665-675. https://doi.org/10.1105/tpc.105.040543 Fan, J., Yan, C., Roston, R., Shanklin, J., & Xu, C. (2014). Arabidopsis lipins, PDAT1 acyltransferase, and SDP1 triacylglycerol lipase synergistically direct fatty acids toward β-oxidation, thereby maintaining membrane lipid homeostasis. Plant Cell, 26(10), 4119-4134. https://doi.org/10.1105/tpc.114.130377 Gan, Y., Song, Y., Chen, Y., Liu, H., Yang, D., Xu, Q., & Zheng, Z. (2018). Transcriptome analysis reveals a composite molecular map linked to unique seed oil profile of Neocinnamomum caudatum (Nees) Merr. BMC Plant Biol, 18(1), 303. https://doi.org/10.1186/s12870-018-1525-9 Geng, X., Dong, N., Wang, Y., Li, G., Wang, L., Guo, X., Li, J., Wen, Z., & Wei, W. (2018). RNA-seq transcriptome analysis of the immature seeds of two Brassica napus lines with extremely different thousand-seed weight to identify the candidate genes related to seed weight. PLoS One, 13(1), e0191297. Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., ... Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol, 29(7), 644-652. https://doi.org/10.1038/nbt.1883 Huang, J., Zhang, T., Zhang, Q., Chen, M., Wang, Z., Zheng, B., Xia, G., Yang, X., Huang, C., & Huang, Y. (2016). The mechanism of high contents of oil and oleic acid revealed by transcriptomic and lipidomic analysis during embryogenesis in Carya cathayensis Sarg. BMC genomics, 17, 113. https://doi.org/10.1186/s12864-016-2434-7 Khan, B. R., Adham, A. R., & Zolman, B. K. (2012). Peroxisomal Acyl-CoA oxidase 4 activity differs between Arabidopsis accessions. Plant Mol Biol, 78(1-2), 45-58. https://doi.org/10.1007/s11103-011-9843-4 Kim, H. U., Lee, K. R., Go, Y. S., Jung, J. H., Suh, M. C., & Kim, J. B. (2011). Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol, 52(6), 983-993. https://doi.org/10.1093/pcp/pcr051 Li, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323. https://doi.org/10.1186/1471-2105-12-323 Li, R., Yu, K., & Hildebrand, D. F. (2010). DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids, 45(2), 145-157. https://doi.org/10.1007/s11745-010-3385-4 Liu, R., Holik, A. Z., Su, S., Jansz, N., Chen, K., Leong, H. S., Blewitt, M. E., Asselin-Labat, M. L., Smyth, G. K., & Ritchie, M. E. (2015). Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res, 43(15), e97. https://doi.org/10.1093/nar/gkv412 Ngo, A. H., Lin, Y. C., Liu, Y. C., Gutbrod, K., Peisker, H., Dörmann, P., & Nakamura, Y. (2018). A pair of nonspecific phospholipases C, NPC2 and NPC6, are involved in gametophyte development and glycerolipid metabolism in Arabidopsis. New Phytol, 219(1), 163-175. https://doi.org/10.1111/nph.15147 Oecd, F. (2022). OECD-FAO Agricultural Outlook 2022-2031. Podkovyrov, S. M., & Larson, T. J. (1996). Identification of promoter and stringent regulation of transcription of the fabH, fabD and fabG genes encoding fatty acid biosynthetic enzymes of Escherichia coli. Nucleic Acids Res, 24(9), 1747-1752. https://doi.org/10.1093/nar/24.9.1747 Omidi, A. H., Shahsavari, M. R., Elhani, a., Jahanbin, A. (2011). Selection of New Safflower (Carthamus tintorius L.) Genotypes for Different Climatic Conditions Using some Stability Parameters. Seed and Plant, 27(3), 278-303. https://doi.org/10.22092/spij.2017.111065 Rupasinghe, S. G., Duan, H., & Schuler, M. A. (2007). Molecular definitions of fatty acid hydroxylases in Arabidopsis thaliana. Proteins, 68(1), 279-293. https://doi.org/10.1002/prot.21335 Sharma, N., Anderson, M., Kumar, A., Zhang, Y., Giblin, E.M., Abrams, S.R., Zaharia, L.I., Taylor, D.C., & Fobert, P.R. (2008). Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts. BMC genomics, 9, 619. https://doi.org/10.1186/1471-2164-9-619 Singh, V., & Nimbkar, N. (2016). Chapter 7- Safflower. In S. K. Gupta (Ed.), Breeding Oilseed Crops for Sustainable Production (pp. 149-167). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-801309-0.00007-0 Soneson, C., Love, M. I., & Robinson, M. D. (2015). Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res, 4, 1521. https://doi.org/10.12688/f1000research.7563.2 Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N. T., Roth, A., Bork, P., Jensen, L. J., & von Mering, C. (2016). The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Research, 45(D1), D362-D368. https://doi.org/10.1093/nar/gkw937 Todd, J., Post-Beittenmiller, D., & Jaworski, J. G. (1999). KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J, 17(2), 119-130. https://doi.org/10.1046/j.1365-313x.1999.00352.x Verwoert, II, van der Linden, K. H., Walsh, M. C., Nijkamp, H. J., & Stuitje, A. R. (1995). Modification of Brassica napus seed oil by expression of the Escherichia coli fabH gene, encoding 3-ketoacyl-acyl carrier protein synthase III. Plant Mol Biol, 27(5), 875-886. https://doi.org/10.1007/bf00037016 Wang, L., Wang, C., Liu, X., Cheng, J., Li, S., Zhu, J. K., & Gong, Z. (2019). Peroxisomal β-oxidation regulates histone acetylation and DNA methylation in Arabidopsis. Proc Natl Acad Sci U S A, 116(21), 10576-10585. https://doi.org/10.1073/pnas.1904143116 Wimalasekera, R., Pejchar, P., Holk, A., Martinec, J., & Scherer, G. F. (2010). Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. Mol Plant, 3(3), 610-625. https://doi.org/10.1093/mp/ssq005 Xu, J., Carlsson, A. S., Francis, T., Zhang, M., Hoffman, T., Giblin, M. E., & Taylor, D. C. (2012). Triacylglycerol synthesis by PDAT1 in the absence of DGAT1 activity is dependent on re-acylation of LPC by LPCAT2. BMC Plant Biol,12,4.https://doi.org/10.1186/1471-2229-12-4 Yang, T., Yu, Q., Xu, W., Li, D.-z., Chen, F., & Liu, A. (2018). Transcriptome analysis reveals crucial genes involved in the biosynthesis of nervonic acid in woody Malania oleifera oilseeds. BMC Plant Biology, 18(1), 247. https://doi.org/10.1186/s12870-018-1463-6 Yesilyurt, M. K., Cesur, C., Aslan, V., & Yilbasi, Z. (2020). The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review. Renewable and Sustainable Energy Reviews, 119, 109574. https://doi.org/https://doi.org/10.1016/j.rser.2019.109574 Yuan, M., Zhu, J., Gong, L., He, L., Lee, C., Han, S., Chen, C., & He, G. (2019). Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnology, 19(1), 24. https://doi.org/10.1186/s12896-019-0516-8 Zhou, L., Lu, L., Chen, C., Zhou, T., Wu, Q., Wen, F., Chen, J., Pritchard, H. W., Peng, C., & Pei, J. (2022). Comparative changes in sugars and lipids show evidence of a critical node for regeneration in safflower seeds during aging. Frontiers in Plant Science, 13.