با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانش آموخته دکتری، گروه زراعت و اصلاح نباتات ، دانشگاه محقق اردبیلی، اردبیل

2 دانشیار گروه زراعت و اصلاح نباتات، دانشگاه محقق اردبیلی، اردبیل

3 دانشیار و رئیس بخش کشت بافت پژوهشکده بیوتکنولوژی کشاورزی ایران (ABRII)، سازمان تحقیقات، آموزش و ترویج کشاورزی (AREEO)

4 استادیار گروه اصلاح نباتات، دانشگاه محقق اردبیلی

5 استادیار پژوهشکده بیوتکنولوژی کشاورزی ایران (ABRII)، کرج

چکیده

در این تحقیق، اثر تیمار سرمایی (4 درجه سانتیگراد به مدت 1 الی 5 روز) در ترکیب با شوک گرمایی (30 درجه سانتیگراد به مدت 1 الی 10 روز) و همچنین اثر کلشی‌سین (25 الی 100 میلی‌گرم در لیتر به مدت 24 الی 72 ساعت) بر القای تقسیمات اسپوروفیتی و تشکیل جنین در میکروسپورهای کشت شده دو رقم هیبرید گوجه فرنگی (برلینا و پتوپراید) بررسی شد. ساختارهای منتج از کشت میکروسپور با بیشتر از 10 هسته تنها در رقم برلینا و در کشت‌هایی مشاهده گردید که به مدت 1 و 2 روز تحت تیمار سرمایی 4 درجه سانتیگراد و سپس به مدت 2 روز در دمای 30 درجه قرار گرفتند. همچنین تیمار سرمایی به مدت 1 یا 2 روز و سپس 2 روز دمای 30 درجه به طور موثری موجب تشکیل ساختارهای میکروسپوری10-9 هسته‌ای در هر دو رقم گردید. میکروسپورهای با بیشتر از 5 هسته در هیچکدام از کشت‌هایی که به مدت 10 روز تحت تیمار دمایی 30 درجه قرار گرفتند بودند مشاهده نگردید. در رقم برلینا، ساختارهای میکروسپوری10-9 هسته‌ای در تیمار 25 میلی-گرم در لیتر کلشی‌سین به مدت 48 ساعت رویت شدند در حالیکه در رقم پتوپراید، در هیچکدام از تیمارها میکروسپورهای با بیشتر از 8 هسته تشکیل نگردید. رویان‌های‌ کروی تنها در محیط کشت دو لایه و تیمار 4 درجه سانتیگراد به مدت 2 و 5 روز و سپس 2 روز دمای 30 درجه تشکیل شدند. در صورت انتخاب دوره مناسب پیش تیمار گرمایی و سرمایی می‌توان رویان‌زایی را در میکروسپورهای گوجه ‌فرنگی القا نمود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Induction of sporophytical divisions and formation of embryo structures in microspore culture of tomato (Lycopersicon esculentum Mill.)

نویسندگان [English]

  • Behzad Ahmadi 1
  • Rasoul Asghari Zakaria 2
  • Mehran Enayati Shariat Panahi 3
  • Naser Zare 4
  • Pejman Azadi 5

1 Ph.D. student, Faculty of Agronomy and Plant Breeding, University of Mohaghegh Ardabili, Ardabil, Iran.

2 Associate Professor, Faculty of Plant Breeding, University of Mohaghegh Ardabili

3 researcher and head of Tisue culture and Gene transformation Dep.ABRII, AREEO

4 Assistant Professor, Faculty of Plant Breeding, University of Mohaghegh Ardabili

5 1- Assistant Professor, Agricultural Research Institute of Iran (ABRII), Karaj

چکیده [English]

In this study, the effect of cold treatment (4 °C for 1 to 5 days) in combination with heat shock (30 °C for 1 to 10 days) and also colchicine treatment (25 to 100 mg/l for 24 to 72 h) were assessed on induction of sporophytical divisions in isolated microspore culture in two hybrid tomato cultivars (‘Berlina’ and ‘Petoperide’). Microspore-derived structures with more than 10 nuclei were only observed in cv. ‘Berlina’ and in the cultures incubated for 1 or 2 days at 4 °C and then for 2 days at 30 °C. In addition, cold treatment for 1 or 2 days and then 2 days at 30 °C could efficiently induce formation of microspore-derived structures with 9-10 nuclei in both cultivars tested. No microspore with more than 5 nuclei was observed in the cultures treated at 30°C for 10 days. In the cv. ‘Berlina’, microspore-derived structures with 9-10 nuclei were detected when 25 mg/l colchicine was used for 48 h, while in cv. ‘Petoperide’, microspore-derived structures with more than 8 nuclei were not observed in all treatments tested. Globular embryos were only produced in two-layered culture medium when treated at 4°C for 2 and 5 days and then subjected to 30°C for 2 days. Microspore embryogenesis could be induced in tomato if appropriate duration of cold and heat treatment was selected.

کلیدواژه‌ها [English]

  • Cold stress
  • Heat stress
  • Colchicine
  • tomato
  • Microspore
Afroz A, Chaudhry Z, Rashid U, Rashid Khan M, Muhammed Ali G )2010( Enhanced regeneration in explants of tomato (Lycopersicon esculentum L.) with the treatment of coconut water. African J. Biotech. 24(9): 3634-3644.
Babbar SB, Agarwal PK, Sahay S, Bhojwani SS (2004) Isolated microspore culture of Brassica: an experimental tool for developmental studies and crop improvement. Indian J. Biotech. 3: 185-202.
Bal U, Abak K (2007) Induction of symmetrical nucleus division and multicellular structures from the isolated microspores of Lycopersicon esculentum Mill. Biotech. Biotech. Equip. 19(1): 35-42.
Bal U, Abak K (2007) Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review. Euphytica 158: 1-9.
Bal U, Shariatpanahi ME, Castro AJ, Emery D, Clement C, Dehestani-Ardakani M, Mozaffari K, Touraev A (2012) Pseudo-embryogenic structures in anther and isolated microspore cultures in vitro: a cautionary guide. Czech J. Genet. Plant Breed. 48(2): 51-60.
Corral-Martínez P, Nuez F, Seguí-Simarro JM (2010) Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms1035 tomato anthers. Euphytica. 178: 215-228.
Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progressfor haploid and doubled haploid plant production. Plant Cell Tiss. Org. Cult. 104: 301-309.
Gamborg OL, Miller RA, Ojima L (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151-158.
Herrera JC, Moreno LG, Acuna JR, Pena MD, Osorio D (2002) Colchicine-induced microspore embryogenesis in coffee. Plant Cell Tiss. Org. Cult. 71(1): 89-92.
Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z. Pflanzenphysiol. 105: 427-434.
Motallebi-Azar A, Khosrowshahli M, Valizadeh M, Masiha S, Moini A, Sharabianlou Z (2004) Combination ability and heritability of callogenesis and shoot regeneration from cultured anthers of tomato (Lycopersicon esculentum Mill.). Iran J. Agri. Sci. 36(5): 1113-1122.
Motallebi-Azar A, Panahandeh J (2010) Effects of colchicine and cold duration pretreatments on androgenesis responses of tomato (Lycopersicon esculentum Mill) via anther culture. Russ. Agri. Sci. 36(5): 338-341.
Peng M, Wolyn DJ (1999) Improved callus formation and plant regeneration for shed microspore culture in asparagus (Asparagus officinalis L.). Plant Cell Rep. 18(1): 954-958.
Sabehat A, Lurie S, Weiss D (1998) Expression of small heat shock proteins at low temperatures. Plant Physiol. 117(2): 651-658.
Seguí-Simarro JM, Testillano PS, Jouannic S, Henry Y, Risueno MC (2005) Mitogen-activated protein kinases are developmentally regulated during stress-induced microspore embryogenesis in Brassica napus L. Histochem. Cell Biol. 123: 541-551.
Seguí-Simarro JM, Nuez F (2007) Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. J. Exp. Bot. 58(5): 1119-1132.
Seguí-Simarro JM, Corral-Martínez P, Parra-Vega V, González-García B (2011) Androgenesis in recalcitrant Solanaceous crops. Plant Cell Rep. 30(5): 765-778.
Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol. Plant. 127(4): 519-534.
Shariatpanahi ME, Touraev A, Heberle-Bors E (2007) Induction of embryogenesis in microspores of tomato (Lycoporsicum esculontum Mill) cv. Microtom. Seed Plant Improv. J. 25(3): 317-330.
Shumilina DV, Shmykova NA, Bondareva LL, Suprunova TP (2015) Effect of genotype and medium culture content on microspore-derived embryo formation in Chinese cabbage (Brassica rapa ssp. chinensis ) cv. Lastochka. Biol. Bull. 42(4): 302-309.
Simmonds DH, Keller WA (1999) Significance of preprophase bands of microtubules in the induction of microspore embryogenesis in Brassica napus. Planta. 208: 383-391.
Supena EDJ, Custers JBM (2011) Refinement of shed-microspore culture protocol to increase normal embryos production in hot pepper (Capsicum annuum L.). Sci. Hort. 130(4): 769-774.
Tay D (2002) Vegetable Hybrid Seed Production.pp: 128-139. In Proceedings International Seed Seminar: Trade, Production and Technology. McDonald M and Contreras S (eds). Pontificia Universidad Católica de Chile, Facultad de Agronomía e IngenieríaForestal, Departamento de CienciasVegetales. October, 15th and 16th, 2002. Santiago - Chile.
Touraev A, Ilham A, Vicente O, Heberle-Bors E (1996a) Stress induced microspore embryogenesis from tobacco microspores: an optimized system for molecular studies. Plant Cell Rep. 15: 561-565.
Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996b) Efficient microspore embryogenesis in wheat (Triticuma estivum L.) induced by starvation at high temperature. Plant Reprod. 9(4): 209-215.
Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv. Bot. Res. 35: 53-109.
Varghese TM, Yadav G (1986) Production of embryoids and calli from isolated microspores of tomato (Lycopersicon esculentum Mill.) in liquid media. Biol. Plant. 28(2): 126-129.
Vergne P, Delvallee I, Dumas C (1987) Rapid assessment of microspore and pollen development stage in wheat and maize using DAPI and membrane permealization. Stain. Technol. 62: 299-304.
Wijnker E, van Dun K, de Snoo CB, Lelivelt CLC, Keurentjes JJB, Naharudin NS, Ravi M, Chan SWL, de Jong H, Dirks R (2012) Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant. Nature Genet. 44:467-470.
Würschum T, Tucker MR, Reif JC, Maurer HP (2012) Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling. BMC Plant Biol. 12:109.
Zagorska NA, Shtereva A, Dimitrov BD, Kruleva MM (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill.)I. Influence of genotype on androgenetic ability. Plant Cell. Rep. 17: 968-973.
Zagorska NA, Shtereva LA, Kruleva MM, Sotirova VG, Baralieva DL, Dimitrov BD (2004) Induced androgenesis in tomato (Lycopersicon esculentum Mill.). III. Characterization of the regenerants. Plant Cell Rep. 22: 449-456.
Zamani I, Gouli-Vavdinoudi E, Kovacs G, Xynias I, Roupakias D, Barnabas B (2003) Effect of parental genotypes and colchicine treatment on the androgenic response of wheat F1 hybrids. Plant Breed. 122(4): 314-317.
Zhao JP, Simmonds DH, Newcomb W (1996) Induction of embryogenesis with colchicine instead of heat in microspores of Brassica napus L. cv. Topas. Planta 198: 433-439.
Zhao JP, Newcomb W, Simmonds D (2003) Heat-Shock proteins 70 kDa and 19 kDa are not required for induction of embryogenesis of Brassica napus L. cv. Topas microspores. Plant Cell Physiol. 44(12): 1417-1421.
Zheng MY (2003) Microspore culture in wheat (Triticum aestivum)-doubled haploid production via induced embryogenesis. Plant Cell Tiss. Org. Cult. 73: 213-230.
Zoriniants S, Tashpulatov AS, Heberle-Bors E, Touraev A (2005) The role of stress in the induction of haploid microspore embryogenesis. In: Palmer CE, Keller WA, Kasha KJ (eds) Biotechnology in Agriculture and Forestry. 56: 35-52.