با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی گروه اصلاح نباتات و بیوتکنولوژی دانشکده کشاورزی دانشگاه زابل

2 استادیار گروه اصلاح نباتات و بیوتکنولوژی دانشکده کشاورزی دانشگاه زابل

3 استاد گروه اصلاح نباتات و بیوتکنولوژی دانشکده کشاورزی دانشگاه زابل

4 مربی، گروه پژوهشی زراعت و اصلاح نباتات، پژوهشکده کشاورزی، پژوهشگاه دانشگاه زابل

چکیده

در این پژوهش جهت بررسی تنوع ژنتیکی ارقام رایج گندم سیستان برای مقاومت به بیماری زنگ از 10 جفت آغازگر ریزماهواره‌ای پیوسته به ژن‌های مقاومت به بیماری زنگ‌های زرد، قهوه‌ای و سیاه استفاده شد. آغازگرهای 12C، SCS719 و Xgdm116 با 3 آلل کمترین و آغازگر Xgwm443 با 7 آلل، بیشترین آلل را داشتند. میانگین تعداد آلل در کل جایگاه‌ها برابر 55/4 بود. بیشترین شاخص چندشکلی (39/0) و شاخص نشانگری (29/2) به ترتیب مربوط به آغازگر Xgdm116 و Xgwm533 و کمترین میزان شاخص چندشکلی (1/0) و شاخص نشانگری (33/0) مربوط به آغازگر Xcfd36 بود. بیشترین تعداد آلل مؤثر، شاخص تنوع شانن و شاخص تنوع نی به ترتیب 45/1، 63/0، 44/0 متعلق به آغازگر Xgdm116 و کمترین میزان آلل مؤثر، شاخص تنوع شانن و شاخص تنوع نی به ترتیب 18/1، 19/0، 11/0 متعلق به آغازگر Xcfd36 بود. در بین ارقام گندم بیشترین درصد مکان چندشکلی، تعداد آلل مؤثر، شاخص تنوع نی و شاخص تنوع شانن به ترتیب 53/39، 27/1، 16/0 و 23/0 متعلق به رقم ارگ بود. تغییرات درون و بین ارقام با استفاده از تجزیه واریانس مولکولی نشان داد که 55 درصد کل تغییرات ژنتیکی درون ارقام وجود دارد. بیشترین و متنوع‌ترین ژن‌های مقاومت به زنگ از لحاظ مقاومت به بیماری زنگ زرد و قهوه‌ای به ترتیب، در رقم ارگ و رقم افلاک و نسبت به هر سه زنگ در رقم ارگ بود. آغازگرهای Xgdm116، Xwmc810 و SCS719 مؤثرترین آغازگرها در شناسایی و جداسازی ارقام مقاوم و حساس بودند. با توجه به اینکه رقم ارگ دارای بیشترین و متنوع‌ترین ژن‌های مقاومت بوده لذا پیشنهاد می‌گردد به‌عنوان یکی از پایه‌های پدری یا مادری در برنامه‌های اصلاحی مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Identification of genetic diversity between common Sistan wheat cultivars based on resistance genes to rust diseases by microsatellite marker

نویسندگان [English]

  • Maliheh Shahraki 1
  • Abbasali Emamjomeh 2
  • Baratali Fakheri 3
  • Bahman Fazeli-Nasab 4

1 M.Sc. Student, University of Zabol, Zabol, Iran

2 Assistant Professor, University of Zabol, Zabol, Iran.

3 Professor, Assistant Professor, University of Zabol, Zabol, Iran

4 Lecturer, Research Department of Agronomy and Plant Breeding, Agricultural Research Institute, University of Zabol, Zabol, Iran.

چکیده [English]

To evaluate genetic diversity between Sistan common wheat cultivars, it was used 10 SSRs primers associated to stem, leaf and yellow rusts resistance genes. The lowest (3) and highest (7) allele number were generated by 12C, SCS719 and Xgdm116 primers and Xgwm443 primer, respectively (4.55 allele per each primer). The highest genetic diversity (0.39) and MI (2.29) was related to Xgdm116 and Xgwm533 primers, respectively; also, the lowest genetic diversity (0.1) and MI (0.33) was related to Xcfd36 primer. Xgdm36 primer showed the highest Ne, Shannon diversity and Nei diversity (1.45, 0.63 and 0.44, respectively); on the other hand, Xcfd36 primer the lowest Ne, Shannon diversity and Nei diversity (1.18, 0.19 and 0.11, respectively). The highest polymorphic bands between wheat cultivars were related to Arg. Arg and Aflak showed the least diversity for resistance to yellow rust and leaf rust, respectively. Also, Arg had the highest diversity for three types of rusts. The Xgdm116, Xwmc810 and SCS719 primers had more effect on identification of wheat cultivars. Finally, Arg cultivar can be recommended as a donor parent in wheat breeding programs for rust resistance. To gain the highest heterosis, it can be suggested hybridization between Arg and Hirmand cultivars.

کلیدواژه‌ها [English]

  • Genetic Diversity
  • Rust disease
  • Resistance
  • SSRs marker
  • Triticum aestivum
Abbasi M (2013) New Reports of Rust Fungi for Mycobiota of Iran. Iranian Journal of Plant Pathology. 49(3): 117-118.
Abdollahi Mandoulakani B, Yaniv E, Kalendar R, Raats D, Bariana HS, Bihamta MR, Schulman AH (2015) Development of IRAP- and REMAP-derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat. TAG Theoretical and applied genetics Theoretische und angewandte Genetik. 128(2): 211-219. 10.1007/s00122-014-2422-8
Abouzied HM, Eldemery SM, Abdellatif KF (2013) SSR-based genetic diversity assessment in tetraploid and hexaploid wheat populations. British Biotechnology Journal. 3(3): 390-404.
Afshari F (2006) Protein Marker Assisted Identification of Yr9, Lr26 and Sr31 Genes in a Group of Iranian Wheat Cultivars. Journal of Agricultural Science and Technology. 6: 265-268.
Afshari F (2008) Prevalent pathtype of Puccinia striiformis f.sp. tritici in Iran. Journal of Agriculture Science and Technology. 10:67-78.
Agrama H, Tuinstra M (2003) Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. African journal of biotechnology. 2(10): 334-340.
Akbari Moghadam H, Rostami H, Eatesam GR, Kohcan SA, Keikha GA (2004) Introduction Of New Wheat Cultivar, Hamoon In Sistan. Seed and Plant Improvment Journal. 20(4): 543-546. 10.22092/spij.2017.110634
Akfirat FS, Ertugrul F, Hasancebi S, Aydin Y, Akan K, Mert Z, Cakir M, Uncuoglu AA (2013) Chromosomal location of genomic SSR markers associated with yellow rust resistance in Turkish bread wheat (Triticum aestivum L.). Journal of genetics. 92(2): 233-240.
Akfirat FS, Uncuoglu AA (2013) Genetic diversity of winter wheat (Triticum aestivum L.) revealed by SSR markers. Biochemical genetics. 51(3-4): 223-229.
Akkaya M, Buyukunal-Bal E (2004) Assessment of genetic variation of bread wheat varieties using microsatellite markers. Euphytica: Netherlands journal of plant breeding. 135(2): 179-185.
Amini Sefidab A, Vahabzadeh M, Majidi Heravan E, Akbari A, Afyoni D, Saberi MH, Tabatabaee MT, Hajiakhondi Meybodi H, Koohkan SA, Lotfali Ayeneh GA (2012) Arg, A New Bread Wheat Cultivar for Moderate Climate Zones of Iran with Salinity of Soil and Water. Seed and Plant Improvment Journal. 28(4): 724-726.
Anonymous (1997) Balochistan Planning and Budget Organization, Review of Capabilities and Development Facilities of the Province(ed)^(eds), Natural Resources. pp. 11 pp.
Anonymous (2017) Wheat characteristics based on Iranian hemisphere (second section). (ed)^(eds). Ministry of Agriculture. pp. 13-66.
Arzani A, Ahun-Manesh A, Torabi M (2006a) A study of resistance genetic of adult plants to brown rust in wheat (Triticum aestevum). Iranian Journal of Agricultural Science. 2:363-373.
Arzani A, Ahun-Manesh A, Torabi M (2006b) A study of resistance genetic of adult plants to brown rust in wheat (Triticum aestevum). Iran Journal of Agricultural science. 2:363-373.
Asghari-Mirk AR, SayedMaasoumi SY, Bihamta MR (2011) Studying of genetic diversity in some wheat cultivar using SSRs marker in dry stress condition. In: Proceedings of the Sixth national congress of new idea in agriculture. Islamic Azad University, Khorasgan.
Asghari A, Babaeizad V, Tajik-Ghanbari MA, Mahdian SA (2013) Molecular Analysis of Two Commercial Wheat Cultivars in Response to Brown Rust Agent Puccinia triticina E. Genetic Novin. 2(1): 81-90.
Autrique E, Singh RP, Tanksley SD, Sorrells ME (1995) Molecular marker for four leaf rust resistance genes intro grassed into wheat from wild relatives. Genome. 38:75-83.
Badakhshan H, Mohammadi S, Zad SA, Moghaddam M, Kamali MJ, Khodarahmi M (2008) Quantitative trait loci in bread wheat (Triticum aestivum L.) associated with resistance to stripe rust. Biotechnology & Biotechnological Equipment. 22(4): 901-906. https://doi.org/10.1080/13102818. 2008.10817575.
Bagherikia S, Karimzadeh G, Naghavi MR (2014) Identification of Wheat Rust Resistance Genes (Lr26, Sr31, Yr9) Using Specific PCR. Crop Biotechnology. 3(5): 129-138.
Bahari Z, Shojaeiyan A, Rashidi Monfared S, Mirshekari A, Nasiri K, Amiriyan M (2015) Investigation of Genetic Diversity among Some Iranian Dill (Anethum graveolens L.) Landraces, Using ISSR Markers. Journal of Plant Genetic Research. 2(1): 11-22.
Bakhtiar F, Farshadfar E, Aghaee Sarbarzeh M, Ghazvini H, Afshari F (2015) Study on the presence of yellow and stem rust resistance genes in doubled haploid lines of bread wheat using molecular markers. Crop Biotechnology. 10:41-56.
Bandani A, Mohammadi A, Emam-Jomeh A, Khalaf-Baghi MR (2005) Determine of genetic diversity of native wheat cultivars in sistan using ISJ (Intron Splicing Junction) and RAPD-PCR. In: Proceedings of the 4th Iranian National Biotechnology congress.
Bernardo AN, Bowden RL, Rouse MN, Newcomb MS, Marshall DS, Bai G (2013) Validation of molecular markers for new stem rust resistance genes in US hard winter wheat. Crop Science. 53(3): 755-764.
Bhardwaj S (2017) Growing with wheat and barley rusts for three decades. Chief Editor. 70(1): 22-31.
Bijan Zadeh E, Shokoufa A, Imam Y (2011) Effect of Different Sodium Chloride Levels on Germination Characteristics of 20 Bread Wheat and Macaroni. Iranian Crop Research. 8(2): 277-283. 10.22067/ gsc.v8i2.7525
Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics. 32(3): 314-322.
Browder L (1973) Probable Genotype of Some Triticum aestivum ‘Agent’Derivatives for Reaction to Puccinia recondita f. sp. tritici 1. Crop Science. 13(2): 203-206. https://doi.org/10.2135/cropsci1973.0011183X001300020016x
Chen X (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology. 27(3): 314-337.
Cherukuri D, Gupta S, Charpe A, Koul S, Prabhu K, Singh R, Haq Q, Chauhan S, Weber W (2003) Identification of a molecular marker linked to an Agropyron elongatum‐derived gene Lr19 for leaf rust resistance in wheat. Plant Breeding. 122(3): 204-208.
Dadrezaei ST, Nazari K (2015) Detection of Wheat Rust Resistance Genes in some Iranian Wheat Genotypes by Molecular Markers. Seed and Plant Improvment Journal. 31(1): 163-187.
Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant molecular biology reporter. 1(4): 19-21. https://doi.org/10.1007/BF02712670
Drikvand R, Bihamta MR, Najafian G, Ebrahimi A (2013) Investigation of genetic diversity among bread wheat cultivars (Triticum aestivum L.) using SSR markers. Journal of Agricultural Science. 5(1): 122-129.
Dubin H, Brennan JP (2009) Combating stem and leaf rust of wheat: Historical perspective, impacts, and lessons learned. Intl Food Policy Res Inst. ISSN.
El-Esawi MA, Witczak J, Abomohra AE-F, Ali HM, Elshikh MS, Ahmad M (2018) Analysis of the Genetic Diversity and Population Structure of Austrian and Belgian Wheat Germplasm within a Regional Context Based on DArT Markers. Genes. 9(1): 47.
Fazeli-nasab B (2012) Ability of microsatellite markers to study genetic diversity of wheat B genome. Technical Journal of Engineering and Applied Sciences. 2(4): 104-106.
Fazeli-Nasab B, Mehrabi AA, Izadi-Darbandi A (2010) Genetic diversity of wheat storage proteins and SSRs markers. Modern Genetics. 5(2): 81-93.
Guo Z-H, Fu K-X, Zhang X-Q, Bai S-Q, Fan Y, Peng Y, Huang L-K, Yan Y-H, Liu W, Ma X (2014) Molecular insights into the genetic diversity of Hemarthria compressa germplasm collections native to southwest China. Molecules. 19(12): 21541-21559.
Gupta SK, Charpe A, Koul S, Prabhu KV, Haq QMR (2005) Development and validation of molecular markers linked to an Aegilops umbellulata–derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome. 48(5): 823-830. https://doi.org/10.1139/g05-051
Hallajian MT, Kehsvarzi M, Bagheri A, Afshari F, Rodbar-Kalari F, Khodarahmi M (2007) QTL mapping of yellow rust resistance genes in wheat using RAPD and RGA molecular markers In: Proceedings of the Fifth National Biotechnology Congress of Islamic Republic of Iran.
Hayden M, Kuchel H, Chalmers K (2004) Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics. 109(8): 1641-1647.
Hiebert C, Thomas J, McCallum B (2005) Locating the broad-spectrum wheat leaf rust resistance gene Lr52 (LrW) to chromosome 5B by a new cytogenetic method. Theoretical and Applied Genetics. 110(8): 1453-1457.
Jamalirad S, Mohammadi S, Toorchi M (2012) Assessing genetic diversity in a set of wheat (Triticum aestivum) genotypes using microsatellite markers to improve the yellow rust resistant breeding programs. African Journal of Agricultural Research. 7(48): 6447-6455.
Khaled A, Motawea M, Said A (2015) Identification of ISSR and RAPD markers linked to yield traits in bread wheat under normal and drought conditions. Journal of Genetic Engineering and Biotechnology. 13(2): 243-252.
Khan H, Bhardwaj S, Gangwar O, Prasad P, Kashyap P, Savadi S, Kumar S, Rathore R (2017) Identifying some additional rust resistance genes in Indian wheat varieties using robust markers. Cereal Research Communications. 45(4): 633-646.
Khan MK, Pandey A, Thomas G, Akkaya MS, Kayis SA, Ozsensoy Y, Hamurcu M, Gezgin S, Topal A, Hakki EE (2015) Genetic diversity and population structure of wheat in India and Turkey. AoB PLANTS. 7(plv083. 10.1093/aobpla/plv083.
Kuleung C, Baenziger P, Kachman S, Dweikat I (2006) Evaluating the genetic diversity of triticale with wheat and rye SSR markers. Crop Science. 46(4): 1692-1700.
Lewontin RC (1972) The apportionment of human diversity. In: Evolutionary biology. (ed)^(eds). Springer. pp. 381-398.
Loegering W, Browder L (1971) system of nomenclature of physiologic races of Puccinia recondita tritici. Plant disease reporter. 55:719-722.
McCartney CA, Somers DJ, McCallum BD, Thomas J, Humphreys DG, Menzies JG, Brown PD (2004) Microsatellite tagging of the leaf rust resistance gene Lr16 on wheat chromosome 2B. Molecular Breeding. 15:329-337.
McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC (2017) Catalogue  of  Gene  Symbols  for Wheat: 2017 Supplement. In: KOMUGI–Integrated Wheat Science Database(ed)^(eds). http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf.
McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publications, Victoria, Australia. 250 p, ISSN,
Mesterházy Á (1989) The Wheat Rusts-Breeding for Resistance (Monograph on Theoretical and Applied Genetics, Vol. 12)(ed)^(eds). JSTOR.
Mir-Drikvand R, Khyrolahi A, Ebrahimi A, Rezvani M (2015) Study of Genetic Diversity Among Some Rainfed Bread and Durum Wheat Genotypes, Using SSR Markers. Journal of Plant Genetic Research. 2(1): 35-44.
Mirzania M, Darvishnia M, Ahmadi H, Ghoudarzi D, Nasrolahi M (2015) Study of resistance components at seedling stage to leaf rust (Puccinia triticina Eriksson) in some commercial cultivars. Iranian Journal of Plant Pathology. 51(2): 263-267.
Mohammadi S, Prasanna B (2003) Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Science. 43(4): 1235-1248.
Mollaheydari Bafghi R, Baghizadeh A, Mohammadi-Nejad G, Nakhoda B (2014) Assessment of genetic diversity in Iranian wheat (Triticum aestivum L.) cultivars and lines using microsatellite markers. Journal of Plant Molecular Breeding. 2(1): 74-89.
Moradkhani H, Aboughadareh AP, Mehrabi AA, Etminan AA (2012) Evaluation of genetic relationships of Triticum-Aegilops species possessing D genome in different ploidy levels using microsatellites. International Journal of Agriculture and Crop Science. 23:1746-1751.
Moradkhani H, Mehrabi AA, Etminan A, Pour-Aboughadareh A (2015) Molecular diversity and phylogeny of Triticum-Aegilops species possessing D genome revealed by SSR and ISSR markers. Plant Breeding and Seed Science. 71(1): 81-95.
Nagella P, Murthy HN (2014) Production of Withanolides from Cell and Organ Cultures of Withania somnifera (L.) Dunal. 285-315. 10.1007/978-94-017-9223-3_12
Naji AM, Moghaddam M, Ghaffari MR, Irandoost HP, Farsad LK, Pirseyedi SM, Mohammadi SA, Ghareyazie B, Mardi M (2008) Validation of EST-derived STS markers localized on Qfhs. ndsu-3BS for Fusarium head blight resistance in wheat using a ‘Wangshuibai’derived population. Journal of Genetics and Genomics. 35(10): 625-629. https://doi.org/10.1016/S1673-8527(08)60083-1
Nei M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences. 70(12): 3321-3323.
Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences. 76(10): 5269-5273.
Omrani A, Khodarahmi M, Afshari F (2011) Study on resistance of wheat commercial cultivars to yellow rust to some isolates (Puccinia striiformis f.sp. tritici) from different regions of Iran. Journal of Agronomy and Plant Breeding. 7(1): 55-68.
Pal D, Bhardwaj S, Sharma D, Kumari S, Patial M, Sharma P (2015) Assessment of genetic diversity and validating rust resistance gene sources using molecular markers in wheat (Triticum aestivum L.). SABRAO Journal of Breeding & Genetics. 47(2): 89-98.
Pezhmanmehr M, Hassani ME, Tabatabaie SMF, Hadian J (2009) Genetic diversity and segregating of populations of Bunium persicum Boiss using molecular markers RAPD. Journal of Environmental Sciences. 7(2): 63-76.
Prasad M, Varshney R, Roy J, Balyan H, Gupta P (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theoretical and Applied Genetics. 100(3-4): 584-592.
Prins R, Groenewald J, Marais G, Snape J, Koebner R (2001a) AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theoretical and Applied Genetics. 103(4): 618-624.
Prins R, Groenewald JZ, Marais GF, Snape JW, Koebner RMD (2001b) AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theoretical and Applied Genetics. 103:618-624.
Rajaram S, Singh RP, Torres E (1988) Current CIMMYT approaches in breeding wheat for Rust Resistance. pp. 101-118. In: N.W. Simmonds and S. Rajaram (Eds.), Breeding Strategies for Resistance to the Rusts of Wheat. CIMMYT, Mexico. 154 p, ISSN,
Rajaram S, Singh RP, Van Ginkel M (1996) Approaches to breed wheat for wide adaptation, rust resistance and drought. pp. 2-30. In: Proceedings of the Eight Assembly Wheat Breeding Society of Australia. The Australian National University, Canberra, ACT. 422 p, ISSN,
Rao VR, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant cell, tissue and organ culture. 68(1): 1-19.
Rauf S, Teixeira da Silva J, Khan AA, Naveed A (2010) Consequences of plant breeding on genetic diversity. International Journal of plant breeding. 4(1): 1-21.
Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics. 149(4): 2007-2023.
Roder MS, Plaschke J, König SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics MGG. 246(3): 327-333.
Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. Mexico, D.F.: CIMMYT. 81, ISSN,
Rolf FJ (2002) NTSYS-Pc: Reference Manual. Exeter publishing Ltd
New York.
Saeeidi A (2005) Characteristics of wheat bread, durum wheat, barley, triticale and rye introduced by the cereal sector (1930-2003). Agricultural education publication, Karaj. pp 356, ISSN,
Saini R (1993) Diversity for resistance to leaf rust in Triticum aestivum. Plant disease (USA). 77:359-363.
Salem KF, Röder MS, Börner A (2015) Assessing genetic diversity of Egyptian hexaploid wheat (Triticum aestivum L.) using microsatellite markers. Genetic resources and crop evolution. 62(3): 377-385.
Sarani M, Rezvani Moghaddam P, Nasiri Mahallati M, Zand A (2011) Investigation of some morphological characteristics effective in increasing the competitive strength of wheat (Trticum aestivum) in competition with Bromus weed (Bromus japonicus). Plant Protection Studies. 25(2): 127-135. 10.22067 / jpp.v25i2.10099
Sardouie Nasab S, Mohammadi Nejad G, Nakhoda B (2013) Assessing genetic diversity of promising wheat (Triticum aestivum L.) lines using microsatellite markers linked with salinity tolerance. Journal of Plant Molecular Breeding. 1(2): 28-39.
Shafie A, Maleki Zanjani B, Karami S, Imani Khah F (2010) Detection of leaf rust resistance gene Lr32 in Iranian wheat varieties and lines using infection-type data test and molecular markers linked to the Lr32. Journal of Plant Production. 17(3): 21-37.
Sharma RC, Nazari K, Amanov A, Ziyaev Z, Jalilov AU (2016) Reduction of winter wheat yield losses caused by stripe rust through fungicide management. Journal of Phytopathology. 164(9): 671-677. https://doi.org/10.1111/jph.12490
Sofalian O, Salmani-Samadi R, Asghari A, Shekarpour M, Sedghi M, Firouzi B, Ahmadpour F (2013) evaluation of salt tolerance in different wheat cultivars and its association with molecular merkers. Journal of Applied Crop Breeding. 1(2): 161-174.
Spielmeyer W, Sharp P, Lagudah E (2003) Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Science. 43(1): 333-336.
Spii (. 2015) Introduce of Agronomical Cultivars (safty and Security of Food (Section 1) provided by (Seed and Plant Improvement Research Institute (SPII)). Agricultural Research, Education and Promotion Organization, Karaj. 238 p, ISSN,
Statler G (1984) Probable Genes for Leaf Rust Resistance in Several Hard Red Spring Wheats 1. Crop Science. 24(5): 883-886. https://doi.org/10.2135/cropsci1984.0011183X002400050013x
Stubbs R (1985) Stripe rust. In ‘Cereal rusts. Vol. II. Disease, distribution, epidemiology, and control’.(Eds AP Roelfs, WR Bushnell) pp. 61–101(ed)^(eds). Academic Press: New York.
Sumathi M, Ramasamy Y (2017) Microsatellite allele length variations in inter-specific hybrids of Eucalyptus. Acta Botanica Croatica. 76(1): 103-106.
Sun X, Bai G, Carver BF (2009) Molecular markers for wheat leaf rust resistance gene Lr41. Molecular breeding. 23(2): 311-321. 10.1007/s11032-008-9237-8
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution. 28(10): 2731-2739. doi: 10.1093/molbev/msr121
Tarinejad A (2013) Studies on genetic diversity between and within six wheat populations using ISSR markers. Research on Crops. 14(1): 37-41.
Vikal Y, Chhuneja R, Singh R, Dhaliwal HS (2004) Tagging of an Aegilops speltoides Derived Leaf Rust Resistance Gene Lr28 with a microsatellite marker in wheat. Plant Biochemistry and Biotechnology. 13: 47-49.
Wang H, Wang Xe, Chen P, Liu D (2007) Assessment of genetic diversity of Yunnan, Tibetan, and Xinjiang wheat using SSR markers. Journal of Genetics and Genomics. 34(7): 623-633.
Weng Y, Azhaguvel P, Devkota R, Rudd J (2007) PCR‐based markers for detection of different sources of 1AL. 1RS and 1BL. 1RS wheat–rye translocations in wheat background. Plant Breeding. 126(5): 482-486. https://doi.org/10.1111/j.1439-0523.2007.01331.x
Xing L, Yang Wx, Li Yn, Liu Dq, Yan Hf, Meng Q-f, Zhang T (2006) A SSR Marker for Leaf Rust Resistance Gene Lr19 in Wheat. Agricultural Sciences in China. 5(2): 111-115.
Yang MN, Xu ZB, Wang MN, Song JR, Jing JX, Li ZQ (2008) Inheritance and molecular mapping of stripe rust resistance gene Yr88375 in Chinese wheat line Zhongliang 88375. Agricultural Sciences in China. 7(8): 901-906.
Yediay FE, Baloch FS, Kilian B, Özkan H (2010) Testing of rye-specific markers located on 1RS chromosome and distribution of 1AL. RS and 1BL. RS translocations in Turkish wheat (Triticum aestivum L., T. durum Desf.) varieties and landraces. Genetic resources and crop evolution. 57(1): 119-129. https://doi.org/10.1007/s10722-009-9456-9
Zakeri A, Yassaie M, Afshari F, Rajaee S, Nikzad AR (2017) Surveying virulence of the causal agent of wheat stripe rust (Puccinia striiformis f. sp. tritici) and determining reaction of commercial wheat cultivars over the past decade in Fars, Iran. Iranian Journal of Plant Pathology. 52(3): 297-316.
Ziyaev Z, Sharma R, Nazari K, Morgounov A, Amanov A, Ziyadullaev Z, Khalikulov Z, Alikulov S (2011) Improving wheat stripe rust resistance in Central Asia and the Caucasus. Euphytica: Netherlands journal of plant breeding. 179(1): 197-207.