Ahemad M,
Khan MS (2012) Effect of fungicides on plant growth promoting activities of phosphate solubilizing
Pseudomonas putida isolated from mustard (
Brassica campestris) rhizosphere.
Chemosphere. 86: 945-950.
Ahmed A, Hasnain S (2014) Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria. Pol. J. Microbiol. 63: 261-266.
Andrews MY,
Duckworth O (2016) A universal assay for the detection of siderophore activity in natural waters. Biometals. 29: 1085-1095.
Bageshwar UK,
Srivastava M,
Pardha-Saradh P,
Paul S,
Gothandapani S,
Jaat RS,
Shankar P,
Yadav R,
Biswas DR,
Kumar PA,
Padaria JC,
Mandal PK,
Annapurna K,
Das HK (2017) An environment friendly engineered Azotobacter can replace substantial amount of urea fertilizer and yet sustain same wheat yield.
App. Environmental. Microbiol. doi: 10.1128/AEM.00590-17
Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front. Microbial. doi:
10.3389/fmicb.2018.01606
Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can. J. Microbiol. 47:793-800.
Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of
Sinorhizobium meliloti.
App. Environmental. Microbiol. 76: 4626-4632.
Boldt TS, Jacobsen CS (1998) Different toxic effects of the sulphonylurea herbicides metsulfuron methyl, chlorsulfuron and thifensulfuron methyl on fluorescent pseudomonads isolated from an agricultural soil. FEMS. Microbiol. Lett. 161: 29–35.
Hatami N, Aminaee MM, Zohdi H, Tanideh T (2013) Damping-off disease in greenhouse cucumber in Iran. Arch. Phytopathol. Plant. Protect. 46: 796–802.
Liu J,
Tang L,
Gao H,
Zhang M,
Guo C (2019) Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. J. Sci. Food. Agric. 99: 281-289.
Lo CC (2010) Effect of pesticides on soil microbial community. J. Environ. Sci. Health. B. 45: 348-359.
Lu Y,
Song S,
Wang R,
Liu Z,
Meng J,
Sweetman AJ,
Jenkins A,
Ferrier RC,
Li H,
Luo W,
Wang T(2015) Impacts of soil and water pollution on food safety and health risks in China. Environ. Int. 77:5-15.
Malboubi MA, HabibpourMehraban F (2018) Agricultural Biotechnology and Food Safety. Strategic Research Journal of Agricultural Sciences and Natural Resources. 3: 103-112.
Meyer SL, Everts KL, Gardener BM, Masler EP, Abdelnabby HM, Skantar AM (2016) Assessment of DAPG-producing Pseudomonas fluorescens for Management of Meloidogyne incognita and Fusarium oxysporum on Watermelon. J. Nematol. 48: 43-53.
Mohamed I,
Eid KE,
Abbas MHH,
Salem AA,
Ahmed N,
Ali M,
Shah GM,
Fang C (2019) Use of plant growth promoting Rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. Ecotoxicol. Environ. Saf. 171: 539-548.
Mostowfizadeh-Ghalamfarsa R, Banihashemi Z (2015) A Revision of Iranian Phytophthora drechsleri Isolates from Cucurbits Based on Multiple Gene Genealogy Analysis. J. Agr. Sci. Tech. 17: 1347-1363.
Rashid M, Khalil S, Ayub N, Alam S, Latif F (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak. J. Biol. Sci. 7:187-196.
Ringel MT, Brüser T (2018) The biosynthesis of pyoverdines. Microb. Cell. 5: 424-437.
Sadeghi A, Koobaz P, Azimi H, Karimi E, Akbari AR (2017) Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces. BioControl. 62: 805-819.
Shirzad A, Fallahzadeh-Mamaghani V, Pazhouhandeh M (2012) Antagonistic potential of fluorescent Pseudomonads and control of crown and root rot of cucumber caused by Phythophtora drechsleri. Plant. Pathol. J. 28:1-9.
Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis. Afr. J. Agric. Res. 9: 1265-1277.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.
Tian F, Ding Y, Zhu H, Yao L, Du B (2009) Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Braz. J. Microbiol. 40: 276-284.
Tripathi G, Rawal, SK (1998) A simple and efficient protocol for isolation of high molecular weight DNA from Streptomyces aureofaciens. Biotechnol. Tech. 12: 629–631.
Vacheron J, Moënne-Loccoz Y, Dubost A, Gonçalves-Martins M, Muller D, Prigent-Combaret C (2016) Fluorescent
Pseudomonas strains with only few plant-beneficial properties are favored in the maize rhizosphere. Front. Plant. Sci. doi:
10.3389/fpls.2016.01212
Xu GH, Zheng HY (1986) Handbook of analytical method on soil microorganism. Agricultural Press. Beijing.