با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد ژنتیک و به‌نژادی گیاهی گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی دانشگاه گیلان، رشت، ایران.

2 دانشیار ژنتیک و به‌نژادی گیاهی گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی دانشگاه گیلان، رشت، ایران.

3 دانش‌آموخته دکتری بیوتکنولوژی، گروه بیوتکنولوژی، دانشکده علوم کشاورزی دانشگاه گیلان، رشت، ایران.

چکیده

خشکی از مهم‌ترین عوامل محدود کننده برای تولید اقتصادی محصولات زراعی به خصوص برنج در دنیا است. به منظور شناسایی نشانگرهای مرتبط با عملکرد و صفات زراعی برنج تحت تنش خشکی، تعداد 40 رگه خویش‌آمیخته برنج از نسل نهم (F9) حاصل از تلاقی ارقام شاه-پسند×IR28 در مزرعه تحقیقاتی مؤسسه تحقیقات برنج کشور (رشت) در بهار و تابستان 1397 در قالب طرح بلوک‌های کامل تصادفی با سه تکرار مورد بررسی قرار گرفتند. در این راستا، چندشکلی110 نشانگر SSR و EST-SSR بین والدین جمعیت ارزیابی و 41 نشانگر، چندشکل مناسبی نشان دادند. نتایج به دست آمده از تجزیه رگرسیونی تحت شرایط بدون تنش و تنش به ترتیب 24 و 22 نشانگر معنی دار شناسایی نمود. بیش‌ترین ضریب تبیین (R2) در شرایط بدون تنش مربوط به نشانگر RM3496 برای تعداد روز تا گلدهی (8/24 درصد) و در شرایط تنش، مربوط به نشانگر RMES6-1 برای صفت میزان خروج خوشه از غلاف (1/28 درصد) بود. نشانگرهای RM211 و RM6697 به ترتیب در شرایط بدون تنش و تنش خشکی، بیشترین ارتباط معنی‌دار را با صفات مختلف از جمله طول خوشه، طول برگ پرچم، تعداد دانه بارور درخوشه، تعداد دانه کل درخوشه و وزن دانه بارور درخوشه داشتند. بر اساس جستجوهای بیوانفورماتیکی، بیش‌ترین الگوی بیان در شرایط تنش خشکی مربوط به ژن با کد دسترسی LOC_Os01g43370 بود. از نشانگرهای آگاهی‌بخش و ژن‌های شناسایی شده توسط روش‌های بیوانفورماتیکی، می‌توان پس از تآیید اعتبار، برای انتخاب به کمک نشانگر، جهت انتقال ژن و بهبود عملکرد برنج در شرایط تنش خشکی مورد استفاده قرار داد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Identification of genes and molecular markers related to rice yield and agronomic traits under drought stress condition

نویسندگان [English]

  • Mehraneh Taslimi 1
  • Atefeh Sabouri 2
  • Amin Abedi 3

1 M.Sc. Student of Genetics and Plant Breeding, Department of Agronomy and Plant Breeding, Facuulty of Agricultural Sciences, University of Guilan, Rasht, Iran.

2 Associate Professor, Department of Agronomy and Plant Breeding, Facuulty of Agricultural Sciences, University of Guilan, Rasht, Iran.

3 PhD of Biotechnology, Department of Biotecnology, Facuulty of Agricultural Sciences, University of Guilan, Rasht, Iran.

چکیده [English]

Drought is one of the most important limiting factors for economic produce crops especially rice in the world. In order to identify related markers to yield and agronomic traits under drought stress condition, 40 recombinant inbred lines F9 (RILs) derived from IR28 and Shah-Pasand varieties evaluated at Rice Research Institute of Iran (Rasht) in the spring and summer 2018, as randomized block design with three replications. In this regard, 110 SSR and EST-SSR markers were assessed on parents of population and identified 41 markers had proper polymorphism between two parents. According to the regression analysis results, 24 and 22 significant markers identified under normal and drought stress conditions respectively. The maximum adjusted (R2) under normal and drought stress conditions were assigned to RM3496 linked to days to flowering (24.8%) and RMES6-1 linked to panicle exsertion (28.1%), respectively. Two markers RM211 and RM6697 had the most number of significant relationship with different traits including panicle length, flag leaf length, number of filled grains per panicle, the total number of grain per panicle, and weight of filled grain per panicle under non-stress and drought stress conditions respectively. According to the bioinformatics searches, the maximum gene expression pattern under drought stress condition was related to gene with accession code LOC_Os01g43370. The identified informative markers and the detected genes by bioinformatics approaches after validation can be utilized in marker assisted-selection (MAS) or gene transfer approaches for improving rice yield and tolerance to drought stress.

کلیدواژه‌ها [English]

  • Regression
  • Abiotic stress
  • SSR marker
  • QTL
Azizi H, Aalami A, Esfahani M, Ebadi AA (2017) Association and structure analysis of some of rice (Oryza sativa L.) genetic resources based on microsatellite markers. Cereal Res. 7(1): 1-16.
Badirdast HB, SalehiLisar Y, Sabouri H, Movafeghi A, Gholamalipour Alamdari E (2018) Identification of informativeAlleles controlling rice traits under flooding and drought stress conditions. Plant Genet. Res. 5(1): 39-54.
Baisakh N, Yabes J, Gutierrez A, Mangu V, Ma P, Famoso A, Pereira A (2020) Genetic Mapping Identifies Consistent Quantitative Trait Loci for Yield Traits of Rice under Greenhouse Drought Conditions. Genes, 11(1): 62.
 BaniKamali M, Soltanloo H, Ramezanpour S, Yamchi A, Marde Momen F (2013) Isolation and characterization of genes cytochrome P450 and CaMBP response to salt stress in Iavandula angustifolia L. The First National Conference on Salinity Stress in Plant and developing strategies for saline agriculture. 12-13 Septamber.2013. Azarbaijan Shahid Madani University.623-629.
Barker R, Dawe D, Tuong TP, Bhuiyan SI Guerra LC (1999) The outlook for water resources in the year 2020: challenges for research on water management in rice production. Southeast Asia, 1: 1-5.
Bolser D, Staines DM,Pritchard E, Kersey P ( 2016) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Plant bioinformatics.Humana Press, New York, NY. 115-140.
Chen C, Chen H, He Y, Xia R (2018) TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv.1:289660.
 Ebadi AA (2013) Mapping QTLs related to cooking and eating quality in rice (Oryza sativa L.). Theses Phd, Razi University.
Edwards JD, Baldo AM, Mueller LA (2016) Ricebase: a breeding and genetics platform for rice, integrating individual molecular markers, pedigrees and whole-genome-based data. Biological Databases and Curation. 2016.
El Rabey H, Salem KH, Mattar M (2013) The genetic diversity and relatedness of eight rice (Oryza sativa L.) cultivars as revealed by AFLP and SSRs marker. Life Sci J. 10: 1471-1479.
Essiet EU (2001) Agricultural sustainability under small-holder farming in Kano, northern Nigeria. J. Arid Environ. 48:1-7.
FAO (2018) Food Agriculture Organization Statistic on line. http://faostat. Fao.org/site
Ghrekhani M, Navabpour S, Sabouri H, Ramezanpour S (2016) Study of genetic variation in iranin rice (Oryza sativa L.) using SSR markers. Crop Breed. 8(20): 107-115.
Hayden C, Jorgensen R (2007) Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes. BMC Biol. 5(32).
IBM Corp. (2016) IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY IBM Corp. (Released 2016).
Julio E, Denoyes-Rothan B, Verrier JL, Dorlhac De Borne F (2006) Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. J. Mol. Breed. 18: 69-91.
Kamal AHM, Kim KH, Shin KH, CHoi JS, Baik BK, Tsujimoto H, Heo HY, Park CS, Woo SH (2010) Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Crop Sci. 4:196-208.
Kawahara Y, Bastide M, Hamilton JP, Kanamori H, McCombie W R, Ouyang Sh, Schwartz DC, Tanaka T, Wu J, Zhou Sh, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SSh, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the (Oryza sativa L.) Nipponbare reference genome using next generation sequence and optical map data. Rice. 6(1): 4.
McCouch, SR Doerge RW (1995) QTL mapping in rice. Trends Genet. 11: 482-487.
Muthu V, Abbai R, Nallathambi J, Rahman H, Ramasamy S, Kambale R, Thulasinathan T, Ayyenar B, Muthurajan, R. (2020) Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. PLoS ONE 15(1): e0227421.
MonacoMK, Stein J, Naithani S, Wei Sh, Dharmawardhana P, Kumari S, Amarasinghe V, Youens-Clark K, Thomason J, Preece J, Pasternak Sh, Olson A, Jiao Y, Lu Zh, Bolser D, Kerhornou A,Staines D, Walts B, Wu G, Eustachio PD, Haw R, Croft D, Kersey PJ, Stein L, Jaiswal P, Ware D (2013) Comparative plant genomics resources. Nucleic Acids Res. 42:1193-1199.
Navabpour S, Haddad R (2011) Evaluation of glutamine syntetase gene role in growth stage of brassica napusat and drought stress condition. Crop Breed. 6(2): 26-36.
Nei YY, Zhang L, Wu YH, Liu HJ, Mao WW, Du J, Xiu HL, Wu XY, Li X, Yan YW, Liu GL, Liu HY, Hu SP (2015) Screening of candidate genes and fine mapping of drought tolerance quantitative trait loci on chromosome 4 in rice (Oryza sativa L.) under drought stress. Ecol. Evol. 5(21): 5007-5015.
Ngangkham U, De SK, Parida S, Kumar KAR, Singh AK, Singh KN, Mahapatra T (2010) Genic markers for wild abortive (WA) cytoplasm based male sterility and its fertility restoration in rice. Mol. Breed. 26: 275-292.
Oliveira Borba TC, Brondani RPV, Breseghello F, Coelho ASG, Mendonca JA, Rangel PHN, Brondani C (2010). Association mapping for yield and grain quality traits in rice (Oryza sativa L.). Genet. Mol. Biol. 33(3): 515-524.
Sabouri H, Rezai A, Moumeni A, Kavousi M (2007) Investigation of genetic diversity of Iranian rice genotypes under salinity condition: compare means, sensitive and tolerance index. In: Bocchi, S., Ferrero, A., Porro, A. (ed.): Proceedings of the 4th International Temperate Rice Conference, TipografiaFiordo, Novara. 50-51.
Sabouri H, Hosseini M (2018) Rice: Botany, Yield Physiology, Agronomy and Breeding. GonbadKavous University Press.
Sabouri A, Dadras AR, Khoshchehreh H, Vatanparast A, H. Afltooni H (2019). Investigation of rice recombinant inbred lines based on drought tolerance using tolerance indices and SSR marker. Iranian Journal of Field Crop Sci. 49(4): 13-24.
SaghaiMaroof MA, Biyashev RM, yang GP, Zhang A, Allard.W (1994) Extra ordinarily polymorphism microsatellite DNA in Barley: Species Diversity, Chromosomal Locations, and Population Dynamics. Proceeding of the National Academy of Sciences of the United States of America. 91: 5466-547.
Samizadeh-Lahiji HA, Edrisi-Maryan Kh (2013) Abiotic Stress Tolerance in Plants: Toward the Improvement of Global Environment and Food (translated). Guilan University Press.
Senadhira D (1987) Salinity as a constraint to increasing rice production in Asia. Required Workshop on Maintenance of Life Support Species in Asia Pacific Region. 4-7.
Tabkhkar N, Rabiei B, Samizadeh-Lahiji H, Hosseini Chaleshtori M (2018) Genetic variation and association analysis of the SSR marker linked to the major drought yield QTLs of rice. Biochem Genet. 56(4):356-374.
Tuberosa R, Gill BS, Quarrie SA (2002) Cereal genomics: ushering in a brave new world. Plant Mol. Biol. 48(5): 445-449.
Tuyen DD, Prasad DT (2008) Evaluation different of yield trait among rice genotype (Oryza sativa L.) under low moisture condition using candidate gene markers. Omonrice. 16: 24-33.
Venuprasad R, Bool ME, Quiatchon L, Atlin GN (2012) A QTL for rice grain yield in aerobic environment with large effect in three genetic background. Theor. Appl. Genet. 124: 323-332.
Vikram P, Kumar A, singh A, Singh NK (2012) Rice: Genomics-Assisted Breeding for Drought Tolerance. Tuteja N, Singh Gill S, Tiburcio AF, Tuteja R. pp.731.
Wambugu P, Ndjiondjop MN, Furtado A, Henry R (2017) Sequencing of bulks of segregants allow dissection of genetic control of amylase content in rice. Biotechnology. 16(1): 100-110.
Xia L, Zou D, Sang J, Xu X, Yin H, Li M, Wu S, Hu S, Hao L, Zhang Z (2017) Rice Expression Database (RED): An integrated RNA-Seq-derived gene expression database for rice. J. Genet. Genomics. 44(5):235-41.
Yadaw RB, DixitSh, Raman A, Kumar Mishra K, Vikram P, Swamy BPM, Sta Cruz MT, Maturan PT, Kumar A (2013) A QTL for high grain yield under lowland drought in the background of popular rice variety Sabitri from Nepal. Field Crops Res. 144:281-287.
Zhang H, Liu Y, Han M, Wu L, Liu Zh, Chen X, Xu P, Wu X (2016) The effects of DNA methylation on the expression of non-imprinted genes in rice. J Rice Res, 4(168), 2.