با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی دکتری اصلاح نباتات دانشگاه علوم کشاورزی و منابع طبیعی ساری، پژوهشکده ژنتیک و زیست‌فناوری کشاورزی طبرستان، ساری، ایران.

2 استاد گروه اصلاح نباتات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، پژوهشکده ژنتیک و زیست‌فناوری کشاورزی طبرستان، ساری، ایران

3 دانشیار گروه اصلاح نباتات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

4 گروه مهندسی ژنتیک و بیولوژی، پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

انتخاب به کمک نشانگر (MAS) نوعی گزینش بوده که تحت تأثیر محیط نیست. موفقیت برنامه‌های به‌نژادی بر پایه MAS به انتخاب و اعتبارسنجی آغازگرهای مورد استفاده بستگی دارد. در این تحقیق، جهت اعتبارسنجی ژن (های) مرتبط با تنش شوری و ارزیابی تنوع آللی این آغازگرها در لاین‌های موتانت برنج، الگوی باندی 18 نشانگر SSR، بر روی نمونه برگی 14 لاین موتانت (M9) برنج، به همراه 2 شاهد حساس (IR29 و سپیدرود) و 2 شاهد متحمل (Nonabokra و دیلمانی) در سال 1398 در پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان بررسی شد. 11 آغازگر بر مبنای تحلیل الگوی باندی در ارقام حساس/ متحمل انتخاب گردیدند. آنالیز مولکولی داده‌ها نشان داد که بیشترین محتوای اطلاعات چندشکلی(PIC) مربوط به آغازگرهای OsMAPK4، OsCML11 وOsCPK17 به‌ترتیب به میزان 46/0، 46/0 و 38/0 بود. بالاترین شاخص نشانگر(MI) مربوط به دو آغازگر OsMAPK4 و OsCML11، به میزان 23/0 بود. آغازگر OsCAX (D) دارای کمترین PIC و MI به‌ترتیب به میزان 05/0 و 11/0 بود. لاین‌های موتانت مورد مطالعه توسط تجزیه کلاستر و بای پلات به ترتیب به 3 و 4 گروه تقسیم شدند. سه آغازگر OsCML11، OsMAPK4 وOsCPK17 به‌ترتیب بر روی کروموزوم‌های 1، 6 و 7 به‌عنوان کاراترین آغازگر‌ها در شناسایی میزان تنوع ژنتیکی بین ژنوتیپ‌های برنج مورد ارزیابی در این مطالعه شناسایی شدند. نظر به اینکه آغازگرهای نامبرده پیوستگی بسیار بالایی با ژن‌های مقاومت به شوری دارند می‌توان پیش‌بینی کرد که لاین‌های G1 (M9-P1-7-2-1)، G8 (M9-P3-21-1-1) و G9

(M9- P6-7-1-1) تحمل بالایی به تنش شوری داشته باشند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Molecular validation of genes responsive to salinity stress and evaluation of their allelic diversity in mutant rice

نویسندگان [English]

  • Morteza Oladi Ghadicolaei 1
  • Ghorban Ali Nematzadeh 2
  • Ali Ranjbar 3
  • Hamidreza Hashemi 4

1 Ph. D. Student of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Genetic and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Iran.

2 Professors, Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Genetic and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari., Iran.

3 Associated Professor, Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.

4 4. Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.

چکیده [English]

Marker-assisted selection (MAS), a selective method which is not influenced by environmental factors. The success of MAS-based breeding programs depends on the selection and validation of the markers used. In this study, to validate the gene(s) associated with salinity stress and evaluation of allelic diversity of these markers in mutant rice lines, Band pattern of 18 SSR markers on a leaf sample of 14 mutant lines (M9) of rice, along with 2 susceptible controls (IR29 and Sepidrood) and 2 tolerant controls (Nonabokra and Dylmani) in 1398 in Genetics & Agricultural Biotechnology Institute of Tabarestan (GABIT). 11 primers were selected based on band pattern analysis in susceptible / tolerant cultivars. The molecular analysis results showed that OsMAPK4, OsCML11 and OsCPK17 had highest polymorphic information content (PIC). OsMAPK4 and OsCML11 had highest marker index (MI) at a rate of 0.23. The lowest PIC (0.05) and MI (0. 11) was accounted for OsCAX (D). Cluster analysis of molecular data, divided rice genotypes into three distinct groups. However, analysis of Biplot classified the genotypes into four different groups. In this study, 3 genes OsCML11, OsMAPK4 and OsCPK17 were identified on chromosomes 1, 6 and 7 respectively, as the most efficient primers in identifying the genetic diversity between the rice genotypes, considering that these primers have a very high linkage with salinity resistance genes, can be predicted that 3 lines G1 (M9-P1-7-2-1), G8 (M9-P3-21-1-1) and G9 (M9-P6 -7-1-1) have high tolerance to salinity stress.

کلیدواژه‌ها [English]

  • Rice
  • mutants
  • salinity stress
  • MAS
Agrawal GK, Agrawal SK, Shibato J, Iwahashi H, Rakwal R (2003) Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem. biophys. res. 300:775-783  
Agrawal GK, Rakwal R, Iwahashi H (2002) Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem. biophys. Res. 294:1009-1016.
Ahloowalia BS, Maluszynski M and Nichterlein K (2004) Global impact of mutation derived varieties. Euphytica, 135: 187-204.
Ahloowalia BS. Maluszynski M (2001) Induced mutations–A new paradigm in plant breeding. Euphytica 118: 167-173.
Anderson J A, Churchill G A, Autrique J E, Tanksley S D, Sorrells M E (1993) Optimizing parental selection for genetic linkage maps. Genome 36: 181-188.
Ando, A. (1970) Mutant induction in rice by radiation combined with chemical protestants and mutagens. In rice breeding with induced mutant II. IAEA. Vienna. p: 1-5.
Doyle J, (1987) A rapid procedure for DNA purification from small quantities of fresh leaf tissue. Phytochem Bull. 19:11–15.
Fu SF, Chou WC, Huang DD, Huang HJ (2002) Transcriptional regulation of a rice mitogen activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant & cell physiology 43: 958-963.
Garcia AB, Engler JDA, Claes B, Villarraoal R, Van Montagu M, Cerats T, Caplex A (1998) The expression of the salt responsive gene salT from rice is regulated by hormonal and developmental cues, Planta 207:172-180.
González-Chavira, M. Torres-Pacheco, I., Villordo- Pineda, E. and Guevara-Gonzalez, R (2006) DNA markers. Research Signpost. Adv. in Agri. and Food Biotech. P: 99-134 ISBN: 81-7736-269-0. 6.
Hosseini MH, Rabiei B, Ebadi AA, Kordrostami M )2018) The response of rice mutant lines to salinity stress at seedling stage using morphological traits and microsatellite markers. Cereal Research Vol. 8, No. 1, 15-31.
Jeong JS, Kim YS, Redillas MC, Jang G, Jung H, Bang SW (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnology.  J. 11: 101-114.
Jeong MJ, Lee SK, Kim BG, Kwon TR, Cho W S, Park Y T, Lee J O, Kwon HB, Byun MO, Park S C (2006) A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses. Plant Cell, Tissue and Organ Culture 85:151-160
Kafi, M (2008) Saline agriculture and its necessity in Iran. Key Papers Proceedings the 10th Iranian Crop Sciences Congress.19-21 August, Karaj, Iran. (In Persian with English abstract)
Kawaura K, Mochida K, Ogihara Y (2008). Genome-wide analysis for identification of salt-responsive genes in common wheat. Func. Integr. Genomics, 8: 277-86.
Kim JA, Agrawal GK, Rakwal R, Han KS, Kim KN, Yun CH, Heu S, Park SY, Lee YH Jwa NS (2003) Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signalling pathways and development. Biochemical and biophysical research communications 300:868- 876.
Kutubuddin AM, Ananda BD, Showkat AG Tapan Kumar M (2015) Identification and analysis of novel salt responsive candidate gene based SSRs (cgSSRs) from rice (Oryza sativa L.). BMC Plant Biology. DOI 10.1186/s12870-015-0498-1
 Majidi Z,  Ranjbar GA,   Babaeian Nadali JNadali B (2011) Application of Mutation Modification Method to Evaluate Salinity Tolerant Rice (Oryza sativa L). Environmental Stresses in Crop Sciences 9: 387-394.
Mishra B, Singh RK (2004) Impact of salt tolerant rice varieties. In: Proc. Of International Symposium on Rice: From Green Revolution to Gene Revolution, Directorate of Rice Research, Heyderabad, October 4-6 2004, Pp X1-vii-viii.
Mohan, M. Nair, S., Bhagwat. A., Krishna. T. G., Yano. M., Bhatia, C. R. Sasaki, T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular breeding. 3: 87-103. 87.
Munns R (2005) Genes and salt tolerance: bringing them together, New Phytol. 645(167).
Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51: 617–630.
Nei M (1978) Analysis of gene diversity in subdivided populations. Proceeding of National Academy of Science USA 70: 3321-3323
Okamura M, Umemoto N, Onishi, N (2012) breeding glittering carnations by an efficient mutagenesis system. Plant Biotechnology. 29: 209-214.
Parida AK Das AB (2004) Salt tolerance and salinity effects on plants: a Review. Otoxicology and Environ. Safety. 60: 324-349
Pervaiz Z, Afzal M, Xiao Y, Ancheng L (2003) Mechanism of salt tolerance in selected wheat cultivars.
Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics 37:1141-1146. 
Shereen A, Ansari R, Mumtaz S, Bughio H.R., Mujtaba SM., Shirazi MU., Khan, M.A. (2009) Impact of gamma irradiation induced changes on growth and physiological responses of rice under saline conditions. Pakistan Journal of Botany 41: 2487-2495.
Singh KN, Sharma PC (2006) Salt tolerant varieties released for saline and alkaline soils. Central Soil Salinity Research Institute. India, Karnal, 132001.  
Singh RK, Gregorio GB, Javier EL, and Toledo, MC (2001) International rice soil stress tolerance observational nursery revisited from 1975-2000
Sorkheh K, Shiran B, Gradziel T M, Epperson B, Martínez P, & Asadi E (2007). Amplified fragment length polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica, 156, 327-344.
Takasaki H, Maruyama K, Kidokoro S (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol. Genet. Genomics 284: 173-183.
Tanji K.K. and Wallender W.W. 2012. Nature and extent of agricultural salinity and sodicity. In: Wallender W.W., Tanji K.K. (eds.) Agricultural Salinity Assessment and Management. ASCE Manuals and Reports on Engineering Practices No. 71. ASCE, Reston. VA, USA, pp. 10-25.
Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The Plant cell 15: 745-759.
Yilmaz A, and Boydak E (2006) The effect of cobalt-60 application yield components of cotton (Gossypium barbadense L.) Pakistan Journal of Biological Sciences 9(15): 2761-769.
Mirdar Mansuri Sh, Babaeian Jelodar N, Bagheri N (2012) Effect of NaCl stress on Iranian rice genotypes in reproductive stage on the base of tolerance indexes and screen by Biplot Method. J. of Plant Production 19(1): 67-78.
Akber M, Khush GS and Lambers DHR (1985) Genetics of salt tolerance in rice. In: Rice Genetics. IRRI, Los Banos, Laguna, Philippines, pp 399-409.
Abdollahi Mandoulakani B, Azizi H (2014) Identification of ISSR markers associated with morphological traits in cultivated alfalfa (Medicago sativa L.) populations. Journal of Cellular and Molecular Researches 27: 260-268. 27210.
Maccaferri M, Stefanelli S, Rotondo F, Tuberosa R, Sanguineti MC (2007) Relationships among durum wheat accessions. I. Comparative analysis of SSR, AFLP, and phenotypic data. Genome 50: 373-384. 10.1139/g06-151.
Bohn M, Utz HF, Melchinger AE (1999) Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Science 39: 228-237.
Jahani M, Nematzadeh Gh A, Mohammadi-Nejad Gh (2016) Genetic diversity analysis in a global panel of rice genotypes by microsatellites. Agri. Biotech. J. by Shahid Bahonar Uni. of Kerman 8(1): 19-32.
Chesnokov YV, Artemyeva A (2015) Evaluation of the measure of polymorphism information of genetic diversity. Agri Biol 50(5): 571-578.
Norollahi N (2018) Screening of Rice M7 Mutant Lines Using Various Salinity (With Morphological and SSR Mollecular Markers) Concentrations and Yield Comparison of Superior Lines. Sari Agricultural Sciences and Nutural Resources University.