تعیین خصوصیات و نقش خانواده پروتئین‌های دهیدرین در تحمل به تنش‌های غیر زیستی در گیاه Aeluropus littoralis

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی دکتری اصلاح نباتات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

2 دانشیار، گروه اصلاح نباتات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

3 دانشیار گروه اصلاح نباتات، دانشگاه علوم کشاورزی و منابع طبیعی ساری (SANRU)

4 استادیار، گروه مهندسی ژنتیک و بیولوژی، پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

چکیده

دهیدرین‏ها (DHNs) متعلق به گروه دوم پروتئین‏های LEA می‌باشند که اعضای آن در اواخر دوره جنین‏زایی در بذر و در پاسخ به تنش‏های غیرزیستی مانند شوری، خشکی و سرما در بافت رویشی تجمع می‏یابند. این پروتئین‌ها بر اساس توالی و تعداد قطعات K (لیزین)، S (سرین) و Y (تیروزین) به پنج زیرگروه SKn، YnSKn، KnS، Kn و YnKn طبقه‌بندی می‏شوند. در این مطالعه، 5 ژن کدکننده پروتئین دهیدرین (DHN) در ژنوم آلوروپوس لیتورالیس (Aeluropus littoralis) به‌عنوان یک گیاه هالوفیت متعلق به خانواده گندمیان شناسایی و خصوصیات فیزیکوشیمیایی، جایگاه سلولی، موتیف‌های حفاظت‌شده و ساختار ژنی آن‌ها تعیین و روابط تکاملی بین این پروتئین‌ها در سایر گونه‌ها نیز مدنظر قرار گرفت. پروتئین‌های AlDHN بر اساس دامنه‌های بسیار حفاظت‌شده K، S و Y در زیرگروه YnSKn قرار گرفتند. الگوی بیان ژن AlDHN.5 به‌عنوان همولوگ ژن RAB18 ارابیدوپسیس (AT5G66400) در دو بافت برگ و ریشه تحت تنش‌های شوری، خشکی، سرما و تیمار آبسیزیک اسید، مورد بررسی قرار گرفت. آنالیز الگوی بیان این ژن در دو بافت برگ و ریشه نشان داد که این ژن در تنش‏های شوری، خشکی، سرما و هورمون ABA در بافت برگ در مقایسه با ریشه بیشتر بیان می‏شود. این نتایج، نشان‌دهنده نقش مهم دهیدرین‏ها، در پاسخ به تنش‏های غیر زیستی می‌باشد. این مطالعه پایه و اساس مطالعات بیشتر در مورد تنظیم بیان این ژن‏ها در شرایط مختلف محیطی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Characterization and Role of the Dehydrin Proteins Family in Abiotic Stress Tolerance in Aeluropus littoralis

نویسندگان [English]

  • Behnaz Dolatabadi 1
  • Gholam Ali Ranjbar 2
  • Hamid Najafi-Zarrini 3
  • Seyyed Hamidreza Hashemi-Petroudi 4
1 Ph.D. Candidate in Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.
2 Associate Professor, Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.
3 Associate professor of Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU)
4 Assistant Professor, Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.
چکیده [English]

Dehydrins (DNHs) belong to group II of LEA (Late Embryogenesis Abundant) protein family which are expressed in late embryogenesis and accumulate in vegetative tissues in response to multiple abiotic stresses such as salt, drought and cold stress These proteins could be classified to five subgroups (YnSKn, Kn, SKn, KnS, and YnKn) based on the sequence and number of K, S, and Y segments. In this study, 5 genes encoding dehydrin protein (DHN) were identified in Aeluropus littoralis, genome as a halophyte grass, belonging to the Poaceae family and physicochemical characteristics, cell localization, conserved motifs and gene structure were determined and evolutionary relationships among different species were considered. AlDHN proteins were classified in the YnSKn subgroup based on highly conserved domains. The expression pattern of AlDHN.5 gene as a homologue of RAB18 (AT5G66400) gene was examined in both leaf and root tissues under salinity, drought, cold stresses and abscisic acid treatment. Analysis of the expression pattern of this gene in both leaf and root tissues showed that this gene is more expressed in leaf tissue compared to root under drought, cold stresses and ABA treatment. Current study lays the foundation for further studies into the regulation of their expression under various environmental conditions.

کلیدواژه‌ها [English]

  • RT-qPCR analysis
  • YnSKn subgroup
  • Gene structure
  • Motif
  • Halophyte
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37: 202-208.
Bao F, Du D, An Y, Yang W, Wang J, Cheng T, Zhang Q (2017) Overexpression of Prunus mume dehydrin genes in tobacco enhances tolerance to cold and drought. Front. Plant Sci. 8: 151.
Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 148(1): 6-24.
Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep. 26(11): 2017-2026.
Cao J, Shi F (2012) Evolution of the RALF gene family in plants: gene duplication and selection patterns. Evol. Bioinform. 8: 271–292.
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A (2015) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44: 279-285.
Galau GA, Hughes DW, Dure L (1986) Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol. Biol. 7(3): 155-170.
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM. (ed) The proteomics protocols handbook, Humana Press, New York City, New York, United States, pp571-607.
Ghelis T, Dellis O, Jeannette E, Bardat F, Miginiac E, Sotta B (2000) Abscisic acid plasmalemma perception triggers a calcium influx essential for RAB18 gene expression in Arabidopsis thaliana suspension cells. FEBS Lett. 483(1): 67-70.
Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front. Plant Sci. 5: 576.
Gulzar S, Khan MA, Ungar IA (2003) Effects of salinity on growth, ionic content, and plant–water status of Aeluropus lagopoides. Commun. Soil Sci. Plant Anal. 34(11-12): 1657-1668.
Guo X, Zhang L, Wang X, Zhang M, Xi Y, Wang A, Zhu J (2019) Overexpression of Saussurea involucrata dehydrin gene SiDHN promotes cold and drought tolerance in transgenic tomato plants. PloS one. 14(11): e0225090.
Guo X, Zhang L, Zhu J, Liu H, Wang A (2017) Cloning and characterization of SiDHN, a novel dehydrin gene from Saussurea involucrata Kar. et Kir. that enhances cold and drought tolerance in tobacco. Plant Sci. 256: 160-169.
Halder T, Upadhyaya G, Ray S (2017) YSK2 type dehydrin (SbDhn1) from Sorghum bicolor showed improved protection under high temperature and osmotic stress condition. Front. Plant Sci. 8: 918.
Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta. 217(2): 290-298.
Hashemi SH, Nematzadeh G, Ahmadian G, Yamchi A, Kuhlmann M (2016) Identification and validation of Aeluropus littoralis reference genes for Quantitative Real-Time PCR Normalization. J Biol. Res-Thessalon. 23(1): 18.
Hincha DK, Thalhammer A (2012) LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochem. Soc. Trans. 40(5): 1000-1003.
Hoagland D, Snyder W (1933) Nutrition of strawberry plant under controlled conditions:(a) effects of deficiencies of boron and certain other elements:(b) susceptibility to injury from sodium salts. Proc. Amer Soc. Hort. Sci. 30: 288-294.
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35: 585-587.
Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2014) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 31(8): 1296-1297.
Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 9(1): 118.
Jing H, Li C, Ma F, Ma JH, Khan A, Wang X, Zhao LY, Gong ZH, Chen RG (2016) Genome-wide identification, expression diversication of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.). PloS one. 11(8): e0161073.
Kawahara Y, De La Bastide M, Hamilton JP, Kanamori H, Mccombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice. 6(1): 4.
Koag M-C, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol. 150(3): 1503-1514.
Kosová K, Vítámvás P, Prášil I (2007) The role of dehydrins in plant response to cold. Biol. Plant. 51(4): 601-617.
Kumar M, Lee SC, Kim JY, Kim SJ, Kim SR (2014) Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). J. Plant Biol. 57(6): 383-393.
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7): 1870-1874.
Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40(D1): D1202-D1210.
Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics. 23(21): 2947-2948.
Li X, Cao J (2016) Late Embryogenesis Abundant (LEA) gene family in maize: identification, evolution, and expression profiles. Plant Mol. Biol. Rep. 34(1): 15-28.
Liang D, Xia H, Wu S, Ma F (2012) Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica. Mol. Biol. Rep. 39(12): 10759-10768.
Liu CC, Li CM, Liu BG, Ge SJ, Dong XM, Li W, Zhu HY, Wang BC, Yang CP (2012) Genome-wide identification and characterization of a dehydrin gene family in poplar (Populus trichocarpa). Plant Mol. Biol. Rep. 30(4): 848-859.
Liu H, Yu C, Li H, Ouyang B, Wang T, Zhang J, Wang X, Ye Z (2015) Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci. 231: 198-211.
Liu Y, Li D, Song Q, Zhang T, Li D, Yang X (2019) The maize late embryogenesis abundant protein ZmDHN13 positively regulates copper tolerance in transgenic yeast and tobacco. Crop J. 7(3): 403-410.
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 25(4): 402-408.
Mota APZ, Oliveira TN, Vinson CC, Williams TCR, Costa MMDC, Araujo ACG, Danchin EG, Grossi-De-Sá MF, Guimaraes PM, Brasileiro ACM (2019) Contrasting effects of wild Arachis dehydrin under abiotic and biotic stresses. Fron. Plant sci. 10: 497.
Nagaraju M, Reddy PS, Kumar SA, Kumar A, Suravajhala P, Ali A, Srivastava RK, Kishor PK, Rao DM (2018) Genome-wide in silico analysis of dehydrins in Sorghum bicolor, Setaria italica and Zea mays and quantitative analysis of dehydrin gene expressions under abiotic stresses in Sorghum bicolor. Plant Gene. 13: 64-75.
Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 45(3): 263-279.
Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R (2008) RcDhn5, a cold acclimation‐responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5‐overexpressing Arabidopsis plants. Physiol. Plant. 134(4): 583-597.
Puhakainen T, Hess MW, Mäkelä P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 54(5): 743-753.
Roberts JK, Desimone NA, Lingle WL, Dure L (1993) Cellular concentrations and uniformity of cell-type accumulation of two Lea proteins in cotton embryos. Plant Cell. 5(7): 769-780.
Rodriguez E, Svensson J, Malatrasi M, Choi D-W, Close T (2005) Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor. Appl. Genet. 110(5): 852-858.
Rorat T (2006) Plant dehydrins-tissue location, structure and function. Cell. Mol. Biol. Lett. 11(4): 536-556.
Tiwari P, Indoliya Y, Singh PK, Singh PC, Chauhan PS, Pande V, Chakrabarty D (2019) Role of dehydrin-FK506-binding protein complex in enhancing drought tolerance through the ABA-mediated signaling pathway. Environ. Exp. Bot. 158: 136-149.
Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ (2008) Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Func. Integr. Genomic. 8(4): 387-405.
Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften. 94(10): 791-812.
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res. 40(15): e115-e115.
Verma G, Dhar YV, Srivastava D, Kidwai M, Chauhan PS, Bag SK, Asif MH, Chakrabarty D (2017) Genome-wide analysis of rice dehydrin gene family: Its evolutionary conservedness and expression pattern in response to PEG induced dehydration stress. PLoS One. 12(5): e0176399.
Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci. 172(2): 414-420.
Wang Y, Xu H, Zhu H, Tao Y, Zhang G, Zhang L, Zhang C, Zhang Z, Ma Z (2014) Classification and expression diversification of wheat dehydrin genes. Plant Sci. 214: 113-120.
Xing X, Liu Y, Kong X, Liu Y, Li D (2011) Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature. Plant Growth Regul. 65(1): 109-118.
Yang W, Zhang L, Lv H, Li H, Zhang Y, Xu Y, Yu J (2015) The K-segments of wheat dehydrin WZY2 are essential for its protective functions under temperature stress. Fron. Plant Sci. 6: 406.
Younesi-Melerdi E, Nematzadeh G, Pakdin-Parizi A, Bakhtiarizadeh MR, Motahari SA (2020) De novo RNA sequencing analysis of Aeluropus littoralis halophyte plant under salinity stress. Sci. Rep. 10(1): 1-14.
Zhang H-F, Liu S-Y, Ma J-H, Wang X-K, Meng Y-C, Zhang Y-M, Chen R-G (2019) CaDHN4, a Salt and Cold Stress-Responsive Dehydrin Gene from Pepper Decreases Abscisic Acid Sensitivity in Arabidopsis. Int. J. Mol. Sci. 21(1): 26.
Zhang H, Zheng J, Su H, Xia K, Jian S, Zhang M (2018) Molecular cloning and functional characterization of the dehydrin (IpDHN) gene from Ipomoea pes-caprae. Fron. Plant sci. 9: 1454.
Zouari N, Saad RB, Legavre T, Azaza J, Sabau X, Jaoua M, Masmoudi K, Hassairi A (2007) Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene. 404(1-2): 61-69.