تجزیه ارتباطی صفات زراعی در ژنوتیپ‌های آفتابگردان (Helianthus annuus L.) با نشانگرهای SSR در شرایط نرمال و تنش کمبود فسفر

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانش آموخته‌ی کارشناسی ارشد اصلاح نباتات، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه. ارومیه، ایران.

2 . استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه. ارومیه، ایران.

3 استاد، گروه علوم خاک، دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه. ارومیه، ایران.

4 استادیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه. ارومیه، ایران.

چکیده

در راستای اصلاح ارقام زراعی فسفر-کارا، 100 ژنوتیپ آفتابگردان روغنی از نقاط مختلف جهان در دو شرایط بهینه و کمبود فسفر (mg/kg 2/7) بر اساس صفات مختلف زراعی در قالب طرح کاملاً تصادفی با سه تکرار در شرایط گلدانی در دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه در سال زراعی 1396 ارزیابی شدند. در آزمایش مولکولی پروفیل مولکولی افراد با 30 جفت آغازگر میکروستلایت (SSR) تهیه گردید. نتایج نشان داد میانگین همه‌ی صفات از جمله قطر ساقه، عرض برگ، سطح برگ، قطر طبق، میزان کلروفیل و وزن هزار دانه در شرایط کمبود فسفر در مقایسه با شرایط بهینه به طور معنی‌دار کاهش یافته است که نشان دهنده تأثیر منفی کمبود فسفر روی صفات مورد بررسی است. میزان دامنه میزان اطلاعات چند شکل (PIC) در ژنوتیپ‌های مورد مطالعه بین 055/0 برای آغازگر ORS718 تا 687/0 برای آغازگر HA3040 متغیر بود. در تجزیه ساختار جمعیت بر اساس 30 مکان میکروستلایت (SSR)، 2 زیر جمعیت احتمالی (2K=) در پانل ارتباطی شناسایی شد. حدود 15/1 درصد از جفت مکانهای SSR مورد مطالعه به طور معنی‌دار در عدم تعادل پیوستگی بودند (P0.01). در تجزیه ارتباطی صفات بر اساس نشانگرهای SSR با استفاده از مدل خطی مخلوط 17 مکان SSR در هر یک از شرایط بهینه و کمبود فسفر با صفات مورد مطالعه پیوسته بودند. برخی از نشانگرها همچون P807، P608، P307، P718 و P878 بین صفات در شرایط بهینه و تنش کمبود فسفر مشترک بودند. نتایج بدست آمده از این مطالعه، اطلاعات ارزشمندی در زمینه گزینش به کمک نشانگر و مبنای ژنتیکی صفات مورد مطالعه در شرایط تنش کمبود فسفر ارائه می-دهد که می‌توان از این اطلاعات در گزینش افراد طی برنامه‌های بهنژادی و تولید لاین‌های خالص در جهت تحقق تولید ارقام هیبرید جدید آفتابگردان با میزان عملکرد بالا و کارایی فسفر بالا بهره برد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Association analysis for agronomic traits with SSR markers in sunflower (Helianthus annuus L.) genotypes under optimum and phosphorus deficiency conditions

نویسندگان [English]

  • Maryam Rasoulzadeh Aghdam 1
  • Reza Darvishzadeh 2
  • Ebrahim Sepehr 3
  • Hadi Alipour 4
1 M.Sc. in Plant Breeding, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.
2 Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.
3 Professor, Department of Soil Science, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.
4 Assistant Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.
چکیده [English]

In order to breeding phosphorus-efficient genotypes, 100 sunflower genotypes coming from different parts of the glob were evaluated based on agro-morphological traits under optimal and phosphorus deficient (7.2 mg/kg) conditions in a completely randomized design with three replications in potted conditions in Faculty of Agriculture and Natural Resources, Urmia University in 2017 cropping season. In molecular experiments, the molecular profile of genotypes was prepared with 30 pairs microsatellite (SSR) primers. The results showed that the mean of most studied traits such as stem diameter, leaf wide, leaf surface, chlorophyll rate and 1000 grain weight was reduced significantly in phosphorus deficient conditions compared to optimal ones, which shows that phosphorus deficiency has a negative effect on the studied traits. The polymorphic information content (PIC) in the studied genotypes ranged from 0.055 for ORS718 primer to 0.687 for HA3040 primer. In population structure analysis, based on 30 SSR loci, potentially 2 sub-populations (K=2) were identified in the association panel. About 1.15% of possible SSR locus pairs showed significant level of linkage disequilibrium (P

کلیدواژه‌ها [English]

  • DNA markers
  • genetic diversity
  • linkage disequilibrium
  • phosphorous deficit stress
  • sunflower
Ahmadpour S, Sofalian O, Darvishzadeh R, Abbaspour N (2018) Preliminary evidence of the associations between DNA markers and morphological characters in sunflower under natural and salt stress conditions. Zemdirbyste-Agriculture 105 (3): 279-286.
Al-Maskri AY, Sajjad M, Khan SH (2012) Association Mapping: A Step Forward to Discovering New Alleles for Crop Improvement. International Journal of Agriculture & Biology 14(1). ‏
Andaya VC, Tabanao D, Maramara G, Sebastian LS (1996) Correlation of molecular diversity with heterosis in nine lowland rice. Philippine Journal of Crop Science (Philippines). ‏
Anonymous (2010) Agribusiness handbook: sunflower crude and refined oil. FAO/EBRD pp. 5-14.
Azizi H, Aalami A, Esfahani M, Ebadi AA (2017) Association and structure analysis of some of rice (Oryza sativa L.) genetic resources based on microsatellite markers. Cereal Research 7(1): 1-16.
Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C (2011) Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. The Plant Cell 23(6): 2196-2208. ‏
Beebe SE, Rojas-Pierce M, Yan X, Blair MW, Pedraza F, Muñoz F, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Science 46: 413-423.
Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172(2): 1165-1177. ‏
Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64: 807–838.
Bhutta AR (1998) Biological studies on some fungi associated with sunflower in Pakistan (Doctoral dissertation, Sindh Agriculture University, Tando Jam).
Chen J, Xu L (2011a) Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages. Frontiers of Agriculture in China 5: 284-290.
Chen J, Xu L (2011b) The candidate QTLs affecting phosphorus absorption efficiency and root weight in maize (Zea mays L.). Frontiers of Agriculture in China 5: 456-462.
Chen J, Xu L, Cai Y, Xu J (2008) QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites. Plant and Soil 313:251-266.
Chen J, Xu L, Cai Y, Xu J (2009) Identification of QTLs for phosphorus utilization efficiency in maize (Zea mays L.) across P levels. Euphytica 167: 245-252.
Chen J, Cai Y, Xu L, Wang J, Zhang W, Wang G, Xu D, Chen T, Lu X, Sun H, Huang A, Liang Y, Dai G, Qin H, Huang Z, Zhu Z, Yang Z, Xu J, Kuang S (2011) Identification of QTLs for biomass production in maize (Zea mays L.) under different phosphorus levels at two sites. Frontiers of Agriculture in China 5:152-161.
Cheng L, Bucciarelli B, Liu J, Zinn K, Miller S, Patton-Vogt J, Allan D, Shen J, Vance CP (2011) White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. Plant Physiology 156: 1131-1148.
Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Global Environmental Change 19: 292-305.
Cui SY, Geng LY, Meng QC, Yu DY (2007) QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L.) during seedling stage. Acta Agronomica Sinica 33: 378-383.
De Wan A, Liu M, Hartman S, Zhang SSM, Liu DT, Zhao C, ..., Barnstable C (2006) HTRA1 promoter polymorphism in wet age-related macular degeneration. Science, 314(5801): 989-992. ‏
Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F (2012) Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Annals of Botany 109:747-759.
Doerge RW (2002) Multifactorial genetics: Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews Genetics 3(1): 43. ‏
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology Notes 14(8): 2611-2620.
Fernandez P, Soria M, Blesa D, Di Rienzo J, Moschen S, Rivarola M, ..., Dosio G (2012) Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray. PLoS One 7(10): e45899. ‏
Foolad MR, Arulsekar S, Becerra V, Bliss FA (1995) A genetic map of Prunus based on an interspecific cross between peach and almond. Theoretical and Applied Genetics 91(2): 262-269. ‏
Ghanbari AA,  Mousavi SH, Abbasian A, Keshavarz S (2015) Leaf morpho-physiological characteristics of common bean under contrasting moisture regimes. Iranian Journal of Field Crop Science 46(2): 287-298.
Ghavami F, Elias EM, Mamidi S, Ansari O, Sargolzaei M, Adhikari T, ..., Kianian SF (2011) Mixed model association mapping for Fusarium head blight resistance in Tunisian-derived durum wheat populations. G3: Genes, Genomes, Genetics 1(3): 209-218. ‏
Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. Journal of Experimental Botany 59: 93-109.
Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Skrumsager Møller I, White P (2012) Functions of macronutrients. In: Marschner P (ed.) Marschner’s Mineral Nutrition of Higher Plants, Third edn. Academic Press, London, pp 135-189.
Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C, Tracy WF (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Science 40: 358-364.
Kochian LV (2012) Plant nutrition: rooting for more phosphorus. Nature 488: 466-467.
Lapis-Gaza HR, Jost R, Finnegan PM (2014) Arabidopsis PHOSPHATE TRANSPORTER1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate. BMC Plant Biology 14: 334.
Li Y, Zhang J, Zhang X, Fan H, Gu M, Qu H, Xu G (2015) Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds. Plant Science 230: 23-32.
Liao H, Yan X (2000) Molecular mapping of QTLs conferring root architecture of common bean in response to phosphorus deficiency. Journal of Agriculture Biotechnology 8: 67-70.
Liu F, Xu Y, Jiang H, Jiang C, Du Y, Gong C, Wang W, Zhu S, Han G, Cheng B (2016) Systematic identification, evolution and expression analysis of the Zea mays PHT1 gene family reveals several new members involved in root colonization by Arbuscular mycorrhizal fungi. International Journal of Molecular Sciences 17: 930.
Liao H, Yan X, Rubio G, Beebe SE, Blair MW, Lynch JP (2004) Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Functional Plant Biology 31: 959-970.
Lambers H, Clements JC, Nelson MN (2013) How a phosphorus acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). American Journal of Botany 100: 263-288.
López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annual Review of Plant Biology 65: 95-123.
Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiology 156: 1041-1049.
Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, Garcia del Moral L, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R (2011) Association mapping in durum wheat grown across a broad range of water regimes. Journal of Experimental Botany 14: 287-293.
Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nature Reviews Genetics 2(5): 370. ‏
Marschner H (1986) Mineral nutrition of higher plants. Academic press Inc. New York, 674p.
Mehrvarz S, Chaich MR, Alikhani HA (2008) Effects of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on yield and yield components of Barely (Hordeum vulgare L.). American-Eurasian Journal of Agricultural and Environment Science 3: 822-828.
Najafzadeh R, Darvishzadeh R, Musa-Khalifani Kh, Abrinbana M, Alipour H (2018) Retrotransposonable regions of sunflower genome having relevance with resistance to Sclerotinia species: S. sclerotiorum and S. minor. Australasian Plant Pathology 47: 511-519.
Ning L, Kan G, DuW, Guo S, Wang Q, Zhang G, Cheng H, Yu D (2016) Association analysis for detecting significant single nucleotide polymorphisms for phosphorus-deficiency tolerance at the seedling stage in soybean [Glycine max (L.) Merr]. Breeding Science 66: 191-203.
Oraguzie NC, Gardiner SE, Rikkerink EH, Silva HN (2007) Association mapping in plants: New York: Springer.
Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a worldwide spring barley collection. BMC Plant Biology 12(1): 16.
Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphatestarved plants. Plant Physiology 156: 1006-1015.
Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. American Journal of Human Genetics 67 (1):170-181.
Qin H, Cai Y, Sun H, Wang J, Wang G, Liu Z (2011) QTL mapping of root exudates related to phosphorus efficiency in maize (Zea mays L.). Journal of Agriculture Biotechnology 19: 93-101.
Qiu H, Liu C, Yu T, Mei X, Wang G, Wang J, Cai Y (2014) Identification of QTL for acid phosphatase activity in root and rhizosphere soil of maize under low phosphorus stress. Euphytica 197: 133-143.
Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Current Opinion in Plant Biology 5(2): 94-100. ‏
Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proceedings of the National Academy of Sciences 98(20): 11479-11484.
Sahranavard-Azartamar F, Ghadimzadeh M, Darvishzadeh R (2016) Genetic diversity and structure analysis of oily sunflower (Helianthus annuus L.) based on microsatellit markers. Journal of Plant Genetic Research 2(2): 15-32.
Sahranavard-Azartamar, F., Darvishzadeh, R., Ghadimzadeh, M., Azizi, H. and Aboulghasemi, Z. (2015). Identification of SSR loci related to some important agromorphological traits in different oily sunflower (Helianthus annuus L.) lines using association mapping. Crop Biotechnology, 10: 73-87.
Sepehr E, Malakouti MJ, Kholdebarin B, Samadi A, Karimian N (2009) Genotypic variation in P efficiency of selected Iranian cereals in greenhouse experiment. International Journal of Plant Production 3(3): 17-28.
Sharfun-Nahar MM, Hashmi MH (2005) Seed-borne mycoflora of sunflower (Helianthus annuus L.). Pakistan Journal of Botany 37: 451- 457.
Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J, Xu F, Hammond JP (2013a) High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Annals of Botany 112: 381-389.
Shi T, Li R, Zhao Z, Ding G, Long Y, Meng J, Xu F, Shi L (2013b) QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus. PLoS One 8: e54559.
Soleimani Gezeljeh A, Darvishzadeh R, Ebrahimi A and Bihamta MR (2018) Identification of SSR and retrotransposon-based molecular markers linked to morphological characters in oily sunflower (Helianthus annuus L.) under natural and water-limited states. Journal of Genetics https://doi.org/10.1007/s12041-018-0901-4.
Stutter MI, Shand CA, George TS, Blackwell MSA, Bol R, MacKay RL, Richardson AE, Condron LM, Turner BL, Haygarth PM (2012) Recovering phosphorus from soil: a root solution? Environmental Science & Technology 46: 1977-1978.
Thirumarimurugan M, Sivakumar VM, Xavier AM, Prabhakaran D, Kannadasan T (2012) Preparation of biodiesel from sunflower oil by transesterification. International Journal of Bioscience,Biochemistry and Bioinformatics 2(6): 441. ‏
Tiessen H (2008) Phosphorus in the global environment. In: White PJ, Hammond JP (eds.) The ecophysiology of plant phosphorus interactions. Springer, Dordrecht, pp 1-7.
Van Kauwenbergh SJ (2010) World phosphate rock reserves and resources. International Fertilizer Development Center, Muscle Shoals, Alabama 35662, USA. ISBN 978-0-88090-167-3.
Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA (2012) Opportunities for improving phosphorus use efficiency in crop plants. New Phytologist 195: 306-320.
Vanitha, J., Manivannan, N. and Chandirakala, R. (2014). Qualitative trait loci analysis for seed yield and component traits in sunflower. African Journal of Biotechnology, 13: 754-761
Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytologist 205: 1632-1645.
Wang X, Yan X, Liao H (2010a) Genetic improvement for phosphorus efficiency in soybean: a radical approach. Annals of Botany 106: 215-222.
Wang X, Chen Y, Thomas CL, Ding G, Xu P, Shi D, Grandke F, Jin K, Cai H, Xu F, Yi B, Broadley MR, Shi L (2017) Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply. DNA Research 24: 407-417.
Wasaki J, Shinano T, Onishi K, Yonetani R, Yazaki J, Fujii F, Shimbo K, Ishikawa M, Shimatani Z, Nagata Y, Hashimoto A, Ohta T, Sato Y, Miyamoto C, Honda S, Kojima K, Sasaki T, Kishimoto N, Kikuchi S, Osaki M (2006) Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. Journal of Experimental Botany 57: 2049-2059.
White PJ, Broadley MR, Gregory PJ (2012) Managing the nutrition of plants and people. Applied and Environmental Soil Science 2012: 104826.
White PJ, George TS, Gregory PJ, Bengough AG, Hallett PD, McKenzie BM (2013a) Matching roots to their environment. Annals of Botany 112:207–222.
White PJ, George TS, Dupuy LX, Karley AJ, Valentine TA, Wiesel L, Wishart J (2013b) Root traits for infertile soils. Frontiers in Plant Science 4:193.
Wissuwa M, Yano M, Ae N (1998) Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theoretical and Applied Genetics 97: 777-783.
Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theoretical and Applied Genetics 105: 890-897.
Wissuwa M, Kondo K, Fukuda T, Mori A, Rose MT, Pariasca-Tanaka J, Kretzschmar T, Haefele SM, Rose TJ (2015) Unmasking novel loci for internal phosphorus utilization efficiency in rice germplasm through genome-wide association analysis. PloS One 10: e0124215.
Withers PJ, Sylvester-Bradley R, Jones DL, Healey JR, Talboys PJ (2014) Feed the crop not the soil: rethinking phosphorus management in the food chain. Environmental Science & Technology 48: 6523-6530.
Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43(3): 461-469. ‏
Yan X, Liao H, TrullMC, Beebe SE, Lynch JP (2001) Induction of a major leaf acid phosphatase does not confer adaptation to low phosphorus availability in common bean. Plant Physiology 125: 1901-1911.
Yan X, Liao H, Beebe SE, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant and Soil265:17-29.
Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theoretical and Applied Genetics 121: 181-193.
Yang M, Ding G, Shi L, Xu F, Meng J (2011) Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant and Soil 339: 97-111.
Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, ..., Kresovich S (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38(2): 203. ‏
Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology 17(2): 155-160. ‏
Zaki MF, Fawzy ZF, Ahmed AA and Tantawy AS (2012). Application of phosphate dissolving bacteria for improving growth and productivity of two sweet peppers (Capsicum annuum L.) Cultivars under newly reclaimed soil. Australian Journal of Basic and Applied Sciences 6: 826-839.
Zeinalabedini M, Khayam-Nekoui M, Grigorian V, Gradziel TM, Martínez-Gómez P (2010) The origin and dissemination of the cultivated almond as determined by nuclear and chloroplast SSR marker analysis. Scientia Horticulturae 125(4): 593-601. ‏
Zeinalabedini M, Majourhat K, Khayam-Nekoui M, Grigorian V, Toorchi M, Dicenta F, Martinez-Gomez P (2007) Molecular characterization of almond cultivars and related wild species using nuclear and chloroplast DNA markers. Journal of Food Agriculture and Environment 5(3/4): 242. ‏
Zeng H, Wang G, Zhang Y, Hu X, Pi E, Zhu Y, Wang H, Du L (2016) Genome-wide identification of phosphate-deficiency responsive genes in soybean roots by high-throughput sequencing. Plant and Soil 398: 207-227.
Zhang D, Cheng H, Geng L, Kan G, Cui S, Meng Q, Gai J, Yu D (2009) Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 167: 313-322.
Zhang D, Liu C, Cheng H, Kan G, Cui S, Meng Q, Gai J, Yu D (2010b) Quantitative trait loci associated with soybean tolerance to low phosphorus stress based on flower and pod abscission. Plant Breeding 129:243-249.
Zhang K, Wang J, Zhang L, Rong C, Zhao F, Peng T, Li H, Cheng D, Liu X, Qin H, Zhang A, Tong Y, Wang D (2013b) Association analysis of genomic loci important for grain weight control in elite common wheat varieties cultivated with variable water and fertiliser supply. PLoS One 8: e57853.
Zhang J, Xiang C, Zhang J, Ren J, Liu Z, Wang C, Qu L, Shi Y (2014a) Mapping QTL controlling yield traits using low phosphorus tolerance selected backcrossing introgression lines of rice (Oryza sativa L.). Chinese Agricultural Science Bulletin 30: 56-65.
Zhang D, Li H, Wang J, Zhang H, Hu Z, Chu S, Lv H, Yu D (2016a) High-density genetic mapping identifies new major loci for tolerance to low-phosphorus stress in soybean. Frontiers in Plant Science 7: 372.
Zhang Y, Thomas CL, Xiang J, Long Y, Wang X, Zou J, Luo Z, Ding G, Cai H, Graham NS, Hammond JP, King GJ, White PJ, Xu F, Broadley MR, Shi L, Meng J (2016b) QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Scientific Reports 6: 33113.
Zhang D, Zhang H, Chu S, Li H, Chi Y, Triebwasser-Freese D, Lv H, Yu D (2017a) Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress. Plant Molecular Biology 93: 137-150.
Zhao JH, Zhou MF (2007) Neoproterozoic adakitic plutons and arc magmatism along the western margin of the Yangtze Block, South China. The Journal of Geology 115(6): 675-689. ‏
Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. The Plant Genome 1(1): 5-20. ‏
Zhu J, Kaeppler SM, Lynch JP (2005a) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theoretical and Applied Genetics 111: 688-695.
Zhu J, Kaeppler SM, Lynch JP (2005b) Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant and Soil 270: 299-310.
Zhu J, Mickelson SM, Kaeppler SM, Lynch JP (2006) Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theoretical and Applied Genetics 113: 1-10.