Aminfar Z, Rabiei B, Tohidfar M, Mirjalili MH (2019) Meta-analysis of Transcriptomics related to the genes of the mevalonate (MVA) and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways for isoprenoids biosynthesis in plants. Crop Biotechnology. 9(25): 1-17.
Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, Von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature biotechnology. 37(4): 420-423.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37: 202-208.
Barhoumi Z, Djebali W, Abdelly C, Chaïbi W, Smaoui A (2008) Ultrastructure of Aeluropus littoralis leaf salt glands under NaCl stress. Protoplasma. 233(3-4): 195-202.
Barhoumi Z, Djebali W, Chaïbi W, Abdelly C, Smaoui A (2007) Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. Journal of plant research. 120(4): 529-537.
Batistič O, Waadt R, Steinhorst L, Held K, Kudla J (2010) CBL‐mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. The Plant Journal. 61(2): 211-222.
Cheong YH, Kim K-N, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. The Plant Cell. 15(8): 1833-1845.
Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007) Two calcineurin B‐like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. The Plant Journal. 52(2): 223-239.
Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annual review of plant biology. 61: 593-620.
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A (2019) The Pfam protein families database in 2019. Nucleic acids research. 47(D1): D427-D432.
Evrard A (2013). Cell type-specific transcriptional responses of plants to salinity.
Fatemi F, Hashemi-Petroudi SH, Nematzadeh G, Askari H, Abdollahi MR (2019) Exploiting differential gene expression to discover ionic and osmotic-associated transcripts in the halophyte grass Aeluropus littoralis. Biological procedures online. 21(1): 1-16.
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39(4): 783-791.
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM. (ed) The proteomics protocols handbook, Humana Press, New York City, New York, United States, pp571-607.
Ghorbani HR, Samizadeh Lahiji H, Nematzadeh G-A (2017) Expression pattern analysis of transcription factors from Aeluropus littoralis in response to salt stress and recovery condition. Journal of Plant Molecular Breeding. 5(1): 19-30.
Hall T, Biosciences I, Carlsbad C (2011) BioEdit: an important software for molecular biology. GERF Bull Biosci. 2(1): 60-61.
Hashemi-Petroudi S, Nematzadeh G, Mohammadi S, Kuhlmann M (2020a) Expression pattern analysis of heat shock transcription factors (HSFs) gene family in Aeluropus littoralis under salinity stress. Environmental Stresses in Crop Sciences. 13(2).
Hashemi-Petroudi SH, Mohammadi S (2020b) Identification of the ERF gene family in Aeluropus littoralis halophyte plant and analysis of their expression pattern in response to salt stress. Crop Biotechnology. 9(29): 53-66.
Hashemi-Petroudi SH, Nematzadeh G, Kuhlmann M (2019) Identification and analysis of a DEVIL paralog gene cluster in Aeluropus littoralis by a comparative genomic approach. Crop Biotechnology. 9(25): 75-87.
Hashemi SH, Arab M, Dolatabadi B, Kuo Y-T, Baez MA, Himmelbach A, Nematzadeh G, Maibody SaMM, Schmutzer T, Mälzer M (2020) Initial Description of the Genome of Aeluropus littoralis, a Halophile Grass.
Hashemi SH, Nematzadeh G, Ahmadian G, Yamchi A, Kuhlmann M (2016) Identification and validation of Aeluropus littoralis reference genes for Quantitative Real-Time PCR Normalization. Journal of Biological Research-Thessaloniki. 23(1): 1-13.
Hashemipetroudi S, Nematzadeh G, Ahmadian G, Yamchi A, Kuhlmann M (2016) Expression analysis of salt stress related expressed sequence tags (ESTs) from Aeluropus littoralis by quantitative real-time PCR. Biosci. Biotech. Res. Comm. 9(3): 445-456.
Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35: 585-587.
Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2014) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 31(8): 1296-1297.
Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langendijk-Genevaux PS, Pagni M, Sigrist CJ (2006) The PROSITE database. Nucleic acids research. 34(suppl_1): D227-D230.
Jalili MM, Haddad MA, Housaindokht MR (2019) Biocomputational Investigations of Structural and Functional Properties of Cry Proteins for Malaria Biocontrol.
Jiang M, Zhao C, Zhao M, Li Y, Wen G (2020) Phylogeny and Evolution of Calcineurin B-Like (CBL) Gene Family in Grass and Functional Analyses of Rice CBLs. Journal of Plant Biology. 1-14.
Jones P, Binns D, Chang H-Y, Fraser M, Li W, Mcanulla C, Mcwilliam H, Maslen J, Mitchell A, Nuka G (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics. 30(9): 1236-1240.
Jung H-J, Kayum MA, Thamilarasan SK, Nath UK, Park J-I, Chung M-Y, Hur Y, Nou I-S (2017) Molecular characterisation and expression profiling of calcineurin B-like (CBL) genes in Chinese cabbage under abiotic stresses. Functional Plant Biology. 44(7): 739-750.
Karami Lake B, Sohani M, Abedi A (2020) Bioinformatical study of Calcium/cation (CaCA) antiporters gene family in maize (Zea mays L.). Crop Biotechnology. 9(29): 21-37.
Kim K-N, Cheong YH, Gupta R, Luan S (2000) Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant physiology. 124(4): 1844-1853.
Kolukisaoglu Ü, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant physiology. 134(1): 43-58.
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K (2018) Advances and current challenges in calcium signaling. New Phytologist. 218(2): 414-431.
Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proceedings of the National Academy of Sciences. 96(8): 4718-4723.
Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic acids research. 46(D1): D493-D496.
Lewit-Bentley A, Réty S (2000) EF-hand calcium-binding proteins. Current opinion in structural biology. 10(6): 637-643.
Li J, Jiang M-M, Ren L, Liu Y, Chen H-Y (2016) Identification and characterization of CBL and CIPK gene families in eggplant (Solanum melongena L.). Molecular Genetics and Genomics. 291(4): 1769-1781.
Li L, Kim B-G, Cheong YH, Pandey GK, Luan S (2006) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proceedings of the National Academy of Sciences. 103(33): 12625-12630.
Li R, Zhang J, Wei J, Wang H, Wang Y, Ma R (2009) Functions and mechanisms of the CBL–CIPK signaling system in plant response to abiotic stress. Progress in Natural Science. 19(6): 667-676.
Lu T, Zhang G, Sun L, Wang J, Hao F (2017) Genome-wide identification of CBL family and expression analysis of CBLs in response to potassium deficiency in cotton. PeerJ. 5: e3653.
Luan S (2009) The CBL–CIPK network in plant calcium signaling. Trends in plant science. 14(1): 37-42.
Ma X, Gai W-X, Qiao Y-M, Ali M, Wei A-M, Luo D-X, Li Q-H, Gong Z-H (2019) Identification of CBL and CIPK gene families and functional characterization of CaCIPK1 under Phytophthora capsici in pepper (Capsicum annuum L.). BMC genomics. 20(1): 775.
Ma X, Li Q-H, Yu Y-N, Qiao Y-M, Gong Z-H (2020) The CBL–CIPK Pathway in Plant Response to Stress Signals. International Journal of Molecular Sciences. 21(16): 5668.
Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J-K, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant physiology. 143(2): 1001-1012.
Mohanta TK, Kumar P, Bae H (2017) Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants. BMC plant biology. 17(1): 38.
Nagae M, Nozawa A, Koizumi N, Sano H, Hashimoto H, Sato M, Shimizu T (2003) The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. Journal of Biological Chemistry. 278(43): 42240-42246.
Pandey GK, Cheong YH, Kim K-N, Grant JJ, Li L, Hung W, D'angelo C, Weinl S, Kudla J, Luan S (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. The Plant Cell. 16(7): 1912-1924.
Pandey GK, Kanwar P, Pandey A, 2014. Global comparative analysis of CBL-CIPK gene families in plants. Springer.
Podell S, Gribskov M (2004) Predicting N-terminal myristoylation sites in plant proteins. BMC genomics. 5(1): 37.
Sánchez-Barrena MJ, Martínez-Ripoll M, Zhu J-K, Albert A (2005) The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. Journal of molecular biology. 345(5): 1253-1264.
Sanyal S, Rao S, Mishra L, Sharma M, Pandey G (2016) Plant Stress Responses Mediated by CBL–CIPK Phosphorylation Network. (ed) The Enzymes, Elsevier, pp31-64.
Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT (2000) A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 24(3): 236.
Shi J, Kim K-N, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J (1999) Novel protein kinases associated with calcineurin B–like calcium sensors in Arabidopsis. The Plant Cell. 11(12): 2393-2405.
Sigrist CJ, De Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I (2012) New and continuing developments at PROSITE. Nucleic Acids Res. 41(D1): D344-D347.
Sun Z, Qi X, Li P, Wu C, Zhao Y, Zhang H, Wang Z (2008) Overexpression of aThellungiella halophila CBl9 homolog, ThCBL9, confers salt and osmotic tolerances in transgenic Arabidopsis thaliana. Journal of Plant Biology. 51(1): 25-34.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution. 30(12): 2725-2729.
Wang M, Gu D, Liu T, Wang Z, Guo X, Hou W, Bai Y, Chen X, Wang G (2007) Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Molecular Biology. 65(6): 733-746.
Wu Y, Ding N, Zhao X, Zhao M, Chang Z, Liu J, Zhang L (2007) Molecular characterization of PeSOS1: the putative Na+/H+ antiporter of Populus euphratica. Plant molecular biology. 65(1-2): 1.
Xu J, Li H-D, Chen L-Q, Wang Y, Liu L-L, He L, Wu W-H (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell. 125(7): 1347-1360.
Yang Y, Zhang C, Tang R-J, Xu H-X, Lan W-Z, Zhao F, Luan S (2019) Calcineurin B-Like proteins CBL4 and CBL10 mediate two independent salt tolerance pathways in Arabidopsis. International journal of molecular sciences. 20(10): 2421.
Yin X, Wang Q, Chen Q, Xiang N, Yang Y, Yang Y (2017) Genome-wide identification and functional analysis of the calcineurin B-like protein and calcineurin B-like protein-interacting protein kinase gene families in turnip (Brassica rapa var. rapa). Frontiers in plant science. 8: 1191.
Zhang H, Yang B, Liu W-Z, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos MK, Jiang Y-Q (2014) Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC plant biology. 14(1): 8.