Akdogan G, Tufekci ED, Uranbey S, Unver T (2016) miRNA-based drought regulation in wheat. Funct. Integr. Genomics. 16(3): 221-233.
Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr. Biol. 15(4): 303-315.
Cohen D, Bogeat-Triboulot M-B, Tisserant E, Balzergue S, Martin-Magniette M-L, Lelandais G, Ningre N, Renou J-P, Tamby J-P, Le Thiec D (2010) Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics. 11(1): 630.
Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46(W1): W49-W54.
Fang Y, Xie K, Xiong L (2014) Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J. Exp. Bot. 65(8): 2119-2135.
Feng H, Duan X, Zhang Q, Li X, Wang B, Huang L, Wang X, Kang Z (2014) The target gene of tae‐miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Mol. Plant Pathol. 15(3): 284-296.
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A (2015) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44: 279-285.
Ge W, Zhang Y, Cheng Z, Hou D, Li X, Gao J (2017) Main regulatory pathways, key genes and micro RNAs involved in flower formation and development of moso bamboo (Phyllostachys edulis). Plant Biotechnol. J. 15(1): 82-96.
Gonçalves B, Hasson A, Belcram K, Cortizo M, Morin H, Nikovics K, Vialette‐Guiraud A, Takeda S, Aida M, Laufs P (2015) A conserved role for CUP‐SHAPED COTYLEDON genes during ovule development. Plant J. 83(4): 732-742.
Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell. 17(5): 1376-1386.
Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant, Cell Environ. 27(5): 521-549.
Guo Y, Zhao S, Zhu C, Chang X, Yue C, Wang Z, Lin Y, Lai Z (2017) Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. BMC Plant Biol. 17(1): 1-20.
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
Hashemi-Petroudi S, Mohammadi S (2021) Identification, classification and expression analysis of DREB transcription factor gene family in Aeluropus littoralis under salinity stress. J. Plant Res. 34(1): 224-235.
Hashemi-Petroudi SH, Mohammadi S (2020) Identification of the ERF gene family in Aeluropus littoralis halophyte plant and analysis of their expression pattern in response to salt stress. Crop Biotechnol. 9(29): 53-66.
Hashemi-Petroudi SH, Nematzadeh G, Mohammadi S, Kuhlmann M (2019) Analysis of Expression Pattern of Genome and Analysis of HSP90 Gene Family in Aeluropus littoralis under Salinity Stress. J. Crop Breed. 11(31): 134-143.
Hashemi-Petroudi SH, Nematzadeh G, Mohammadi S, Kuhlmann M (2020) Expression pattern analysis of heat shock transcription factors (HSFs) gene family in Aeluropus littoralis under salinity stress. Env. Stresses Crop Sci. 13(2): 571-581.
Hernández Y, Sanan-Mishra N (2017) miRNA mediated regulation of NAC transcription factors in plant development and environment stress response. Plant Gene. 11: 190-198.
Hu G, Lei Y, Wang L, Liu J, Tang Y, Zhang Z, Chen A, Peng Q, Yang Z, Wu J (2018) The ghr-miR164 and GhNAC100 module participates in cotton plant defence against Verticillium dahliae. bioRxiv. 440826.
Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol. 15(1): 1-15.
Jeong D-H, Park S, Zhai J, Gurazada SGR, De Paoli E, Meyers BC, Green PJ (2011) Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell. 23(12): 4185-4207.
Jin W, Wu F (2015) Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves. BMC Plant Biol. 15(1): 1.
Jones P, Binns D, Chang H-Y, Fraser M, Li W, Mcanulla C, Mcwilliam H, Maslen J, Mitchell A, Nuka G (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics. 30(9): 1236-1240.
Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science. 323(5917): 1053-1057.
Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res. 47(D1): D155-D162.
Lakhwani D, Pandey A, Sharma D, Asif MH, Trivedi PK (2020) Novel microRNAs regulating ripening-associated processes in banana fruit. Plant Growth Regul. 90(2): 223-235.
Lan Y, Su N, Shen Y, Zhang R, Wu F, Cheng Z, Wang J, Zhang X, Guo X, Lei C (2012) Identification of novel MiRNAs and MiRNA expression profiling during grain development in indica rice. BMC Genomics. 13(1):1-10.
Lee MH, Jeon HS, Kim HG, Park OK (2017) An Arabidopsis NAC transcription factor NAC4 promotes pathogen‐induced cell death under negative regulation by microRNA164. New Phytol. 214(1): 343-360.
Letunic I, Doerks T, Bork P (2014) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43(D1):D257-D260.
Li B, Qin Y, Duan H, Yin W, Xia X (2011) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J. Exp. Bot. 62(11): 3765-3779.
Li J, Guo G, Guo W, Guo G, Tong D, Ni Z, Sun Q, Yao Y (2012) miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize (Zea mays L.). BMC Plant Biol. 12(1): 220.
Lu S, Sun Y-H, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress–responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell. 17(8): 2186-2203.
Lu X, Dun H, Lian C, Zhang X, Yin W, Xia X (2017) The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica. Plant Physiol. Biochem. 115: 418-438.
Lu Y-B, Qi Y-P, Yang L-T, Guo P, Li Y, Chen L-S (2015) Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves. BMC Plant Biol. 15(1): 271.
Luan Y, Cui J, Zhai J, Li J, Han L, Meng J (2015) High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans. Planta. 241(6): 1405-1416.
Mallory AC, Reinhart BJ, Jones‐Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 23(16): 3356-3364.
Nair MM, Krishna T, Alagu M (2020) Bioinformatics insights into microRNA mediated gene regulation in Triticum aestivum during multiple fungal diseases. Plant Gene. 21: 100219.
Naqvi AR, Haq QM, Mukherjee SK (2010) MicroRNA profiling of tomato leaf curl new delhi virus (tolcndv) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol. J. 7(1): 281.
Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10(2): 79-87.
Pandey R, Joshi G, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S (2014) A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS One. 9(4): e95800.
Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell. 110(4): 513-520.
Sánchez-Montesino R, Bouza-Morcillo L, Marquez J, Ghita M, Duran-Nebreda S, Gómez L, Holdsworth MJ, Bassel G, Oñate-Sánchez L (2019) A regulatory module controlling GA-mediated endosperm cell expansion is critical for seed germination in Arabidopsis. Mol. plant. 12(1): 71-85.
Sievers F, Higgins DG (2021) The clustal omega multiple alignment package. (ed) Multiple Sequence Alignment, Springer, pp 3-16.
Sosa-Valencia G, Palomar M, Covarrubias AA, Reyes JL (2017a) The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought. J. Exp. Bot. 68(8): 2013-2026.
Sosa-Valencia G, Romero-Pérez PS, Palomar VM, Covarrubias AA, Reyes JL (2017b) Insights into the function of the phasiRNA-triggering miR1514 in response to stress in legumes. Plant Signal. Behav. 12(3): e1284724.
Stender EG, O'shea C, Skriver K (2015) Subgroup-specific intrinsic disorder profiles of arabidopsis NAC transcription factors: Identification of functional hotspots. Plant Signal. Behav. 10(6): e1010967.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1): D607-D613.
Wang L, Zhao H, Chen D, Li L, Sun H, Lou Y, Gao Z (2016) Characterization and primary functional analysis of a bamboo NAC gene targeted by miR164b. Plant Cell Rep. 35(6): 1371-1383.
Wang M, Wang Q, Zhang B (2013) Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene. 530(1): 26-32.
Wilkins O, Waldron L, Nahal H, Provart NJ, Campbell MM (2009) Genotype and time of day shape the Populus drought response. Plant J. 60(4): 703-715.
Xie Q, Frugis G, Colgan D, Chua N-H (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14(23): 3024-3036.
Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T (2010) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell. 22(4): 1249-1263.
You J, Zhang L, Song B, Qi X, Chan Z (2015) Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon. PloS one. 10(3): e0122027.
Yuan F, Xu Y, Leng B, Wang B (2019) Beneficial effects of salt on halophyte growth: Morphology, cells, and genes. Open life sci. 14(1): 191-200.
Zeng S, Liu Y, Pan L, Hayward A, Wang Y (2015) Identification and characterization of miRNAs in ripening fruit of Lycium barbarum L. using high-throughput sequencing. Front. Plant Sci. 6: 778.
Zhao J-P, Jiang X-L, Zhang B-Y, Su X-H (2012) Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa. PLoS One. 7(9): e44968.
Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 161(3): 1375-1391.