با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد بیوتکنولوژی کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

2 دانشیار گروه بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

3 استاد گروه مهندسی ژنتیک و بیولوژی، پژوهشکده ژنتیک و زیست‌فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.

4 استادیار گروه مهندسی ژنتیک و بیولوژی، پژوهشکده ژنتیک و زیست‌فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.

چکیده

پروتئین‌های شبه‌کالسینئورین B (CBL) یکی از اجزای کلیدی حسگرهای کلسیم بوده که در فرایندهای مختلف رشد و نموی و همچنین تنش‌های محیطی مشارکت دارند. در این تحقیق به دلیل نقش و کارکرد ژن‌های CBL در هدایت پیام در تنش‌های غیرزیستی و زیستی، شناسایی عناصر سیس این خانواده ژنی در گیاهان Oryza sativa (OsCBL)، Arabidopsis thaliana (AtCBL) و A. littoralis (AlCBL) مدنظر قرار گرفت. در مکان‌یابی ده ژن AtCBL، ده ژن OsCBL و شش ژن AlCBL، پروتئین‌های AtCBL4، AtCBL10، AlCBL4.2، AlCBL4.3 و AlCBL10 در غشای پلاسمایی قرار گرفتند. بر اساس درخت فیلوژنتیکی، 26 ژن CBL مورد بررسی به دو گروه اصلی تقسیم شدند به نحوی‌که تقریبا همه CBL‌ها در مجاورت با ژن‌های ارتولوگشان طبقه‌بندی شدند. در بررسی مقایسه‌ای ساختار ژنی خانواده ژنی CBL‌ها مشاهده گردید که حدود 66 درصد ژن‌های AlCBL، 60 درصد ژن‌های AtCBL و 80 درصد ژن‌های OsCBL دارای هشت اگزون و هفت اینترون بودند. شناسایی و طبقه‌بندی عناصر تنظیمی سیس در هشت گروه مختلف صورت گرفت که از مهمترین عناصر سیس مرتبط به تنش می‌توان به موتیف‌های ABRE، ARE، موتیف-GC،MBS ، DRE، STRE و LTR اشاره نمود. تنوع مشاهده شده در بیان اعضای خانواده ژنی به‌دلیل وجود مکانیسم‌های تنظیمی متفاوت در تنظیمات بیان این ژن‌ها بوده که به دلیل وجود عناصر تنظیمی اختصاصی بافت و اختصاصی تنش در پروموتر اعضای این خانواده است. بررسی عملکردی ژن AlCBL4.2 به دلیل دارا بودن شش موتیف as-1 با توجه به ماهیت بیان اختصاصی و بیان افزاینده این موتیف می‌تواند اطلاعات با اهمیتی را در خصوص فرایندهای تنظیمی این ژن‌ ارائه نماید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Comparative study of cis-regulatory elements in the promoter regions of calcineurin B-like genes (CBLs) of Aeluropus, Arabidopsis and rice plants

نویسندگان [English]

  • Mozhdeh Arab 1
  • Hamid Najafi Zarrini 2
  • Ghorbanali Nematzadeh 3
  • Seyyed Hamidreza Hashemi-petroudi 4

1 M.Sc. Student in Plant Breeding, Sari Agricultural Sciences & Natural Resources University (SANRU)), Sari, Iran.

2 Associate Professor, Department of Biotechnology, Sari Agricultural Sciences & Natural Resources University (SANRU), Sari, Iran.

3 Professor, Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.

4 Assistant Professors, Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.

چکیده [English]

The calcineurin B-like protein (CBL) is an essential calcium sensor that plays a crucial role in plant growth, development and stress responses. The identification of a cis-acting element in the promoter region of the CBL gene family in three plants, including Oryza sativa (OsCBL), Arabidopsis thaliana (AtCBL), and Arabidopsis littoralis (AtCBL), was investigated because of their importance and involvement in signal transduction under abiotic and biological stresses. Sub-cellular localization of 10 AtCBL, 10 OsCBL and six AlCBL genes showed that AtCBL4, AtCBL10, AlCBL4.2, AlCBL4.3 and AlCBL10 proteins were located in the plasma membrane. 26 CBLs were identified and grouped into two major groups based on their orthologous relatedness in the phylogenetic tree. According to a comparative analysis of the gene structure of the CBLs gene family, about 66 percent of AlCBL genes, 60 percent of AtCBL genes, and 80 percent of OsCBL genes had eight exons and seven introns. Cis-regulatory elements were identified and grouped into eight distinct classes. The ABRE, ARE, GC motif, MBS, DRE, STRE, and LTR motifs were essential stress-related elements. Different regulatory mechanisms in the promoter region of AtCBLs are responsible for their distinct expression patterns, which are regulated by numerous tissue-specific and stress-specific cis-elements. The functional analysis of AlCBL4.2 (which contains six as-1 motifs) will provide useful information about this gene's regulatory processes due to its tissue-specific and enhancer feature of as-1 motif.

کلیدواژه‌ها [English]

  • as-1 motif
  • CBL
  • halophyte
  • promoter
Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. The Plant Cell. 9(10): 1859-1868. Arab M, Najafi-Zarrini H, Nematzadeh G, Hashemi SH (2021a) In silico analysis of CBL gene family in the halophyte plant Aeluropus littoralis and the model plant Arabidopsis thaliana. Crop Biotechnology. 10(32): 17-35. Arab M, Najafi Zarrini H, Nematzadeh G, Hashemipetroudi SH (2021b) Bioinformatic analysis of calcium-dependent protein kinase (CPK) in Aeluropus littoralis L. Crop Biotechnology. 11(33): 1-17. Arend D, Lange M, Chen J, Colmsee C, Flemming S, Hecht D, Scholz U (2014) e! DAL-a framework to store, share and publish research data. BMC bioinformatics. 15(1): 1-13. Aslam M, Fakher B, Jakada BH, Zhao L, Cao S, Cheng Y, Qin Y (2019) Genome-wide identification and expression profiling of CBL-CIPK gene family in pineapple (Ananas comosus) and the role of AcCBL1 in abiotic and biotic stress response. Biomolecules. 9(7): 293. Atif RM, Shahid L, Waqas M, Ali B, Rashid MaR, Azeem F, Nawaz MA, Wani SH, Chung G (2019) Insights on calcium-dependent protein kinases (CPKs) signaling for abiotic stress tolerance in plants. International journal of molecular sciences. 20(21): 5298. Aysha J, Noman M, Wang F, Liu W, Zhou Y, Li H, Li X (2018) Synthetic promoters: designing the cis regulatory modules for controlled gene expression. Molecular biotechnology. 60(8): 608-620. Benfey PN, Ren L, Chua N-H (1990) Tissue‐specific expression from CaMV 35S enhancer subdomains in early stages of plant development. The EMBO journal. 9(6): 1677-1684. Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang H-S, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. The Plant Cell. 14(3): 559-574. Davarpanah SJ, Dana M, Bakhshi Khaniki G, Mokhtarieh AA (2018) Generation of fungal laccase producing transgenic tobacco plants using a root-specific expression promoter. Crop Biotechnology. 8(24): 47-58. Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I (2018) Calcium transport across plant membranes: mechanisms and functions. New Phytologist. 220(1): 49-69. Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annual review of plant biology. 61: 593-620. Dolatabadi B, Ranjbar GA, Najafi-Zarrini H, Hashemi-Petroudi SH (2020) Characterization and Role of the Dehydrin Proteins Family in Abiotic Stress Tolerance in Aeluropus littoralis. Crop Biotechnology. 10(31): 101-115. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi‐Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought‐, high‐salt‐and cold‐responsive gene expression. The Plant Journal. 33(4): 751-763. Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM (2017) The evolution of calcium-based signalling in plants. Current Biology. 27(13): R667-R679. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A (2019) The Pfam protein families database in 2019. Nucleic acids research. 47(D1): D427-D432. El Mahi H, Pérez-Hormaeche J, De Luca A, Villalta I, Espartero J, Gámez-Arjona F, Fernández JL, Bundó M, Mendoza I, Mieulet D (2019) A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant physiology. 180(2): 1046-1065. Evrard A (2013) Cell type-specific transcriptional responses of plants to salinity. Faraji S, Hashemi-Petroudi SH, Najafi-Zarrini H, Ranjbar G (2018) Characterization and expression profiling of AlPKL gene in response to salinity stress and recovery conditions in halophyte Aeluropus littoralis. Crop Biotechnology. 7(20): 13-27. Fatemi Ardestani SF, Nematzadeh G, Askari H, Hashemi H (2014) Identification and isolation of transcripts in response to KCl from Aeluropus littoralis. Crop Biotechnology. 4(6): 73-83. Gu Z, Ma B, Jiang Y, Chen Z, Su X, Zhang H (2008) Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses. Gene. 415(1-2): 1-12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41: 95-98. Hashemi SH, Arab M, Dolatabadi B, Kuo Y-T, Baez MA, Himmelbach A, Nematzadeh G, Maibody SaMM, Schmutzer T, Mälzer M (2020) Initial Description of the Genome of Aeluropus Littoralis, a Halophile Grass. Hashemi SH, Nematzadeh G, Askari H, Ghahary S (2014) Involvement of Cytosine DNA methylation in different developmental stages of Aeluropus littoralis. Journal of Plant Molecular Breeding. 2(2): 56-67. Hashemi SH, Nematzadeh G, Askari H, Ghasemi Y (2012) Pattern of DNA cytosine methylation in Aeluropus littoralis during temperature stress. Journal of Plant Molecular Breeding. 1(1): 16-24. Hou L, Chen L, Wang J, Xu D, Dai L, Zhang H, Zhao Y (2012) Construction of stress responsive synthetic promoters and analysis of their activity in transgenic Arabidopsis thaliana. Plant molecular biology reporter. 30(6): 1496-1506. Hussain J, Bibi G, Shafiq S (2020) Calcium Dependent Protein Kinases in Plants. Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective. 192-225. Jaspers P, Blomster T, Brosché M, Salojärvi J, Ahlfors R, Vainonen JP, Reddy RA, Immink R, Angenent G, Turck F (2009) Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. The Plant Journal. 60(2): 268-279. Jiang M, Zhao C, Zhao M, Li Y, Wen G (2020) Phylogeny and Evolution of Calcineurin B-Like (CBL) Gene Family in Grass and Functional Analyses of Rice CBLs. Journal of Plant Biology. 1-14. Jones P, Binns D, Chang H-Y, Fraser M, Li W, Mcanulla C, Mcwilliam H, Maslen J, Mitchell A, Nuka G (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics. 30(9): 1236-1240. Jung H-J, Kayum MA, Thamilarasan SK, Nath UK, Park J-I, Chung M-Y, Hur Y, Nou I-S (2017) Molecular characterisation and expression profiling of calcineurin B-like (CBL) genes in Chinese cabbage under abiotic stresses. Functional Plant Biology. 44(7): 739-750. Kaur A, Pati PK, Pati AM, Nagpal AK (2017) In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PloS one. 12(9): e0184523. Kaur G, Pati PK (2016) Analysis of cis-acting regulatory elements of respiratory burst oxidase homolog (Rboh) gene families in Arabidopsis and rice provides clues for their diverse functions. Computational biology and chemistry. 62: 104-118. Ladan Moghdam A (2020) Genome wide bioinformatics analysis BES1 gene family in Vitis vinifera L. Crop Biotechnology. 10(30): 71-86. Lam E, Benfey PN, Gilmartin PM, Fang R-X, Chua N-H (1989) Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proceedings of the National Academy of Sciences. 86(20): 7890-7894. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic acids research. 40(D1): D1202-D1210. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van De Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic acids research. 30(1): 325-327. Liu W, Mazarei M, Rudis MR, Fethe MH, Peng Y, Millwood RJ, Schoene G, Burris JN, Stewart Jr CN (2013) Bacterial pathogen phytosensing in transgenic tobacco and A rabidopsis plants. Plant biotechnology journal. 11(1): 43-52. Lu T, Zhang G, Sun L, Wang J, Hao F (2017) Genome-wide identification of CBL family and expression analysis of CBLs in response to potassium deficiency in cotton. PeerJ. 5: e3653. Lu Y, Sun J, Yang Z, Zhao C, Zhu M, Ma D, Dong T, Zhou Z, Liu M, Yang D (2019) Genome-wide identification and expression analysis of glycine-rich RNA-binding protein family in sweet potato wild relative Ipomoea trifida. Gene. 686: 177-186. Ma X, Li Q-H, Yu Y-N, Qiao Y-M, Gong Z-H (2020) The CBL–CIPK Pathway in Plant Response to Stress Signals. International Journal of Molecular Sciences. 21(16): 5668. Mali KV, Kumar A, Singh A (2020) Regulation of Stress Responses in Plants by Calcium Dependent Protein Kinases. Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective. 226-247. Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J-K, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant physiology. 143(2): 1001-1012. Mo C, Wan S, Xia Y, Ren N, Zhou Y, Jiang X (2018) Expression patterns and identified protein-protein interactions suggest that cassava CBL-CIPK signal networks function in responses to abiotic stresses. Frontiers in plant science. 9: 269. Mohammadian N (2020) Phylogenetic, structure and expression analysis of growth regulatory factors (GRF) genes in wheat (Triticum aestivum L.) using in silico methods. Crop Biotechnology. 10(31): 45-60. Mohanta TK, Kumar P, Bae H (2017) Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants. BMC plant biology. 17(1): 38. Nitz I, Berkefeld H, Puzio PS, Grundler FM (2001) Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Science. 161(2): 337-346. Saad RB, Romdhan WB, Zouari N, Azaza J, Mieulet D, Verdeil J-L, Guiderdoni E, Hassairi A (2011) Promoter of the AlSAP gene from the halophyte grass Aeluropus littoralis directs developmental-regulated, stress-inducible, and organ-specific gene expression in transgenic tobacco. Transgenic research. 20(5): 1003-1018. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT (2000) A gene expression database for the molecular pharmacology of cancer. Nature genetics. 24(3): 236. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nature genetics. 37(5): 501-506. Shahriari AG, Tahmasebi A, Sazegari S (2018) Regulatory Network Identification, Promoter and Expression Analysis of Arabidopsis thaliana NPR1 in Defense Responses against Stresses. Notulae Scientia Biologicae 10(3): 333-339. Sun T, Wang Y, Wang M, Li T, Zhou Y, Wang X, Wei S, He G, Yang G (2015) Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.). BMC plant biology. 15(1): 269. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution. 30(12): 2725-2729. Wang M, Gu D, Liu T, Wang Z, Guo X, Hou W, Bai Y, Chen X, Wang G (2007) Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Molecular Biology. 65(6): 733-746. Wittkopp PJ, Kalay G (2012) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nature Reviews Genetics. 13(1): 59-69. Wu Y, Ding N, Zhao X, Zhao M, Chang Z, Liu J, Zhang L (2007) Molecular characterization of PeSOS1: the putative Na+/H+ antiporter of Populus euphratica. Plant molecular biology. 65(1-2): 1. Xiao J, Hu R, Gu T, Han J, Qiu D, Su P, Feng J, Chang J, Yang G, He G (2019) Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat. BMC genomics. 20(1): 1-14. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell 6(2): 251-264. Yamazaki Y, Tsuchiya R, Takahashi Y, Asanuma T, Shidahara Y, Sakaniwa S (2010) Rice Genes in Oryzabase. Nature Precedings. 1-1. Yang Y, Zhang C, Tang R-J, Xu H-X, Lan W-Z, Zhao F, Luan S (2019) Calcineurin B-Like proteins CBL4 and CBL10 mediate two independent salt tolerance pathways in Arabidopsis. International journal of molecular sciences 20(10): 2421. Yin X, Wang Q, Chen Q, Xiang N, Yang Y, Yang Y (2017) Genome-wide identification and functional analysis of the calcineurin B-like protein and calcineurin B-like protein-interacting protein kinase gene families in turnip (Brassica rapa var. rapa). Frontiers in plant science. 8: 1191. Zhang H, Yang B, Liu W-Z, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos MK, Jiang Y-Q (2014) Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC plant biology. 14(1): 8. Zouari N, Saad RB, Legavre T, Azaza J, Sabau X, Jaoua M, Masmoudi K, Hassairi A (2007) Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene. 404(1): 61-69. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT (2000) A gene expression database for the molecular pharmacology of cancer. Nature Genetics 24(3): 236. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nature Genetics 37(5): 501-506. Shahriari AG, Tahmasebi A, Sazegari S (2018) Regulatory network identification, promoter and expression analysis of Arabidopsis thaliana npr1 in defense responses against stresses. Notulae Scientia Biologicae 10(3): 333-339. Sun T, Wang Y, Wang M, Li T, Zhou Y, Wang X, Wei S, He G, Yang G (2015) Identification and comprehensive analyses of the cbl and cipk gene families in wheat (Triticum aestivum L.). BMC Plant Biology 15(1): 269. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Mega6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution. 30(12). 2725-2729. Wang M, Gu D, Liu T, Wang Z, Guo X, Hou W, Bai Y, Chen X, Wang G (2007) Overexpression of a putative maize calcineurin B-like protein in arabidopsis confers salt tolerance. Plant Molecular Biology 65(6): 733-746. Wittkopp PJ, Kalay G (2012) Cis-regulatory elements: Molecular mechanisms and evolutionary processes underlying divergence. Nature Reviews Genetics 13(1): 59-69. Wu Y, Ding N, Zhao X, Zhao M, Chang Z, Liu J, Zhang L (2007) Molecular characterization of pesos1: The putative NA+/H+ antiporter of Populus euphratica. Plant Molecular Biology 65(1-2): 1. Xiao J, Hu R, Gu T, Han J, Qiu D, Su P, Feng J, Chang J, Yang G, He G (2019) Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat. BMC Genomics 20(1): 1-14. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell 6(2): 251-264. Yang Y, Zhang C, Tang R-J, Xu H-X, Lan W-Z, Zhao F, Luan S (2019) Calcineurin B-like proteins CBL4 and CBL10 mediate two independent salt tolerance pathways in arabidopsis. International Journal of Molecular Sciences 20(10): 2421. Yin X, Wang Q, Chen Q, Xiang N, Yang Y, Yang Y (2017) Genome-wide identification and functional analysis of the calcineurin B-like protein and calcineurin B-like protein-interacting protein kinase gene families in turnip (Brassica rapa var. Rapa). Frontiers in Plant Science 8: 1191. Zhang H, Yang B, Liu W-Z, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos MK, Jiang Y-Q (2014) Identification and characterization of cbl and cipk gene families in canola (Brassica napus L.). BMC Plant Biology 14(1): 8. Zouari N, Saad RB, Legavre T, Azaza J, Sabau X, Jaoua M, Masmoudi K, Hassairi A (2007) Identification and sequencing of ests from the halophyte grass Aeluropus littoralis. Gene 404(1): 61-69.