با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

2 استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد، ایران

3 دکتری تخصصی، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم‌آباد

چکیده

گیاه دارویی کلوس یا کرفس‌کوهی (Kelussia odoratissima Mozaff.) منبعی غنی از مواد فعال دارویی با اثرات درمانی است که به‌صورت انحصاری در رشته‌کوه‌های زاگرس مرکزی ایران یافت می‌شود. با وجود خطر انقراض این‌گونه گیاهی، اطلاعاتی درباره ژنوم / ترنسکریپتوم و بیوسنتز ترکیبات ارزشمند این گیاه وجود ندارد. در بین مولکول‌های حیاتی، اگرچه مولکول‌های microRNA (miRNAs) نقش مهمی در فرآیندهای مختلف زیستی به‌ویژه در بیوسنتز متابولیت‌های ثانویه در گیاهان دارویی دارند، در حال حاضر، هیچ گزارشی از وضعیت miRNAها در گیاه کلوس منتشر نشده است. مطالعه حاضر به‌منظور شناسایی miRNAهای محافظت‌شده و ژن‌های هدف آن‌ها در ترنسکریپتوم برگ کلوس انجام شد. پس از توالی‌یابی RNA با پلتفرم Illumina HiSeq 2500، خوانش‌های کوتاه پردازش شده سرهم‌بندی شدند. در این مطالعه، تعداد 4658 یونی‌ژن حاوی توالی miRNAهای بالقوه شناسایی شدند. پس از پالایه کردن دقیق، پنج توالی miRNA (miR156-3P، miR408، miR169، miR171 و miR398) از میان توالی‌های نامزد شناسایی و ژن‌های هدف آن‌ها مشخص شدند. نتایج این مطالعه نشان داد که miRNAها در مسیرهای متابولیکی مختلفی از جمله متابولیسم بوتانوات، متابولیسم گلیکوزیلات و دی‌کربوکسیلات، متابولیسم نشاسته و ساکارز، تثبیت کربن در اندامک‌های فتوسنتزی، تخریب پراکسی‌زوم و تخریب اسیدهای چرب درگیر بودند. miR408 با تنظیم ژن‌های شش مسیر متابولیکی، به‌عنوان تأثیرگذارترین miRNA محافظت‌شده در پروفایل بیانی کلوس شناخته شد. به‌طور کلی، با توجه به نقش تنظیمی miRNAهای شناسایی‌شده بر روی طیف گسترده‌ای از شبکه‌های ژنی و فرآیندهای بیولوژیکی گیاه کلوس در مطالعه حاضر، می‌توان از این miRNAها به‌عنوان ژن‌های نامزد برای بهبود صفات کمی و کیفی این گیاه استفاده‌کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

De novo transcriptome assembly and conserved microRNAs identification of medicinal plant, Kelussia odoratissima Mozaff.

نویسندگان [English]

  • Maryam Ramezani 1
  • Farhad Nazarian-Firouzabadi 2
  • Ahmad Ismaili 2
  • Seyed Sajad Sohrabi 3

1 Ph.D. Student, Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.

2 Prof., Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.

3 Ph.D., Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.

چکیده [English]

Kelus (Kelussia odoratissima Mozaff.), a medicinal plant rich in active pharmaceutical ingredients with therapeutic effects, is found only in central Zagros Mountains, west of IRAN. Despite being in danger of extinction, there are no genetic evidences regarding kelus Omics as well as valuable compounds biosynthesis pathways. MicroRNAs (miRNAs) play an important role in different processes such as growth and development, cell proliferation, response to stresses and biosynthesis metabolite. As far as the bioinformatic data are concern, the genome/transcriptome of kelus has not been sequenced. The present study was performed to identify the conserved miRNAs and their target genes in the kelus leaf transcriptome. After pair-end sequencing with the Illumina HiSeq 2500 platform, clean reads were assembled. In total, 4658 unigenes were found to contain potential miRNAs sequences. Following strict filtering criteria, five miRNAs belonging to five conserved miRNA families (miR156-3P, miR408, miR169, miR171 and miR398) were identified among candidate sequences. Results of this study revealed that the target genes of the identified miRNAs were involved in various metabolic pathways, including butanoate metabolism, glyoxylate and dicarboxylate metabolism, starch and sucrose metabolism, carbon fixation in photosynthetic organisms, peroxisome degradation, and fatty acid degradation. By affecting genes associated with six metabolic pathways, miR408 was identified as the most influential conserved microRNA in the kelus leaf transcriptome. In general, given the regulatory roles of identified miRNAs on broad spectrum of gene networks and biological processes of kelus, these miRNAs can be used as candidate genes for breeding kelus quantitative and qualitative traits.

کلیدواژه‌ها [English]

  • Gene network
  • Kelus
  • miR408
  • Secondary metabolites
Ahmadi, F., Kadivar, M., & Shahedi, M. (2007). Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. [Article]. Food Chemistry, 105(1), 57-64. doi: 10.1016/j.foodchem.2007.03.056 Ahmadi, K., Omidi, H., Amini Dehaghi, M., & Naghdi Badi, H. (2019). A Review on the Botanical, Phytochemical and Pharmacological Characteristics of Kelussia odoratissima Mozaff. (Kelussia odoratissima Mozaff.)]. JMPIR, 18(72), 30-45. doi: 10.29252/jmp.4.72.S12.30 Ahmadi, K., Omidi, H., Amini Dehaghi, M., & Soltani, E. (2021). Evaluation of dormancy breaking treatments on seed germination and soluble compounds of Kelussia odoratissma Mozaff. seedling. [Article]. Plant Physiology Reports, 26(3), 513-525. doi: 10.1007/s40502-021-00594-0 Akbarian, A., Rahimmalek, M., Sabzalian, M. R., & Hodaei, M. (2021). Sequencing and phylogenetic analysis of phenylalanine ammonia lyase (pal) and chalcone synthase (chs) genes in some Iranian endemic species of Apiaceae. Gene Reports, 23, 101147. Akbarian, A., Rahimmalek, M., Sabzalian, M. R., & Sarfaraz, D. (2019). Variation in essential oil composition, phenolic, flavonoid and antioxidant activity of Kelussia odoratissima Mozaff based on three model systems. [Article]. Journal of Applied Research on Medicinal and Aromatic Plants, 13. doi: 10.1016/j.jarmap.2019.100208 Akkafi, H. R., Valivand, M., & Jenabi, T. (2014). Autecological, palynological and karyological characterization of Kelussia odoratissima Mozaff. (A case study in Dare Sepestan region from Fereydoon shahr in Isfahan province). Iranian Journal of Plant Biology, 6(19), 125-140. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. Amiripour, M., Sadat Noori, S. A., Shariati, V., & Soltani Howyzeh, M. (2019). Transcriptome analysis of Ajowan (Trachyspermum ammi L.) inflorescence. Journal of Plant Biochemistry and Biotechnology, 28(4), 496-508. doi: 10.1007/s13562-019-00504-4 Andrews, S., Krueger, F., Segonds-Pichon, A., Biggins, L., Krueger, C., & Wingett, S. (2020). FastQC: a quality control tool for high throughput sequence data [Online]. 2010. Avilable from: http://www. bioinformatics. babraham. ac. uk/projects/fastqc/. Accessed, 27. Bae, S. H., Oh, J. H., & Lee, J. (2021). Identification of Interspecific and Intraspecific Single Nucleotide Polymorphisms in Papaver spp. [Article]. Plant Breeding and Biotechnology, 9(1), 55-64. doi: 10.9787/PBB.2021.9.1.55 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. Cao, B., Jiang, J., Bai, J., Wang, X., Li, Y., Shao, W., & Yu, X. (2022). miR398 Attenuates Heat-Induced Leaf Cell Death via Its Target CSD1 in Chinese Cabbage. [Article]. Horticulturae, 8(4). doi: 10.3390/horticulturae8040299 Dai, X., & Zhao, P. X. (2011). psRNATarget: a plant small RNA target analysis server. Nucleic acids research, 39(suppl_2), W155-W159. Ding, J., Zhou, S., & Guan, J. (2012). Finding microRNA targets in plants: current status and perspectives. Genomics Proteomics Bioinformatics, 10(5), 264-275. doi: 10.1016/j.gpb.2012.09.003 Fu, N., Wang, Q., & Shen, H.-L. (2013). De Novo Assembly, Gene Annotation and Marker Development Using Illumina Paired-End Transcriptome Sequences in Celery (Apium graveolens L.). PLOS ONE, 8(2), e57686. doi: 10.1371/journal.pone.0057686 Fu, Y., Mason, A. S., Zhang, Y., Lin, B., Xiao, M., Fu, D., & Yu, H. (2019). MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus. [Article]. BMC Plant Biology, 19(1). doi: 10.1186/s12870-019-2189-9 Gantet, P., & Memelink, J. (2002). Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. J Trends in Pharmacological Sciences, 23(12), 563-569. Gao, Y., Feng, B., Gao, C., Zhang, H., Wen, F., Tao, L., & Xiong, J. (2022). The Evolution and Functional Roles of miR408 and Its Targets in Plants. International Journal of Molecular Sciences, 23(1). doi: 10.3390/ijms23010530 Gilbert, D. (2016). Accurate & complete gene construction with EvidentialGene. Paper presented at the Galaxy Community Conference. Gleave, A. P., Ampomah-Dwamena, C., Berthold, S., Dejnoprat, S., Karunairetnam, S., Nain, B., & MacDiarmid, R. M. (2008). Identification and characterisation of primary microRNAs from apple (Malus domestica cv. Royal Gala) expressed sequence tags. Tree Genetics & Genomes, 4(2), 343-358. González-Mendoza, D., Troncoso-Rojas, R., Gonzalez-Soto, T., Grimaldo-Juarez, O., Cecena-Duran, C., Duran-Hernandez, D., & Gutierrez-Miceli, F. (2018). Changes in the phenylalanine ammonia lyase activity, total phenolic compounds, and flavonoids in Prosopis glandulosa treated with cadmium and copper. J Anais da Academia Brasileira de Ciências, 90, 1465-1472. Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., & Zeng, Q. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology, 29(7), 644-652. Guo, J., Huang, Z., Sun, J., Cui, X., & Liu, Y. (2021). Research Progress and Future Development Trends in Medicinal Plant Transcriptomics. [Review]. Frontiers in Plant Science, 12. doi: 10.3389/fpls.2021.691838 Gutiérrez-García, C., Ahmed, S. S. S. J., Ramalingam, S., Selvaraj, D., Srivastava, A., Paul, S., & Sharma, A. (2022). Identification of microRNAs from medicinal plant Murraya Koenigii by high-throughput sequencing and their functional implications in secondary metabolite biosynthesis. [Article]. Plants, 11(1). doi: 10.3390/plants11010046 Hammond, S. M. (2015). An overview of microRNAs. Advanced drug delivery reviews, 87, 3-14. doi: 10.1016/j.addr.2015.05.001 Heim, M. A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B., & Bailey, P. C. (2003). The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Molecular biology, 20(5), 735-747. Hu, T., Gao, Z. Q., Hou, J. M., Tian, S. K., Zhang, Z. X., Yang, L., & Liu, Y. (2020). Identification of biosynthetic pathways involved in flavonoid production in licorice by RNA-seq based transcriptome analysis. [Article]. Plant Growth Regulation, 92(1), 15-28. doi: 10.1007/s10725-020-00616-1 Iorizzo, M., Senalik, D. A., Grzebelus, D., Bowman, M., Cavagnaro, P. F., Matvienko, M., & Simon, P. W. (2011). De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics, 12, 389. doi: 10.1186/1471-2164-12-389 Javani, R., & Asadi-Gharneh, H. A. (2020). Mineral composition in populations of Iranian wild celery. [Article]. International Journal of Vegetable Science, 26(1), 55-61. doi: 10.1080/19315260.2019.1604603 Jennewein, S., Rithner, C. D., Williams, R. M., & Croteau, R. B. (2001). Taxol biosynthesis: Taxane 13α-hydroxylase is a cytochrome P450-dependent monooxygenase. 98(24), 13595-13600. doi:10.1073/pnas.251539398 Jeshvaghani, Z. A., Rahimmalek, M., Talebi, M., Goli, S. A. H., & Products. (2015). Comparison of total phenolic content and antioxidant activity in different Salvia species using three model systems. Industrial Crops, 77, 409-414. Jeyakumar, J. M. J., Ali, A., Wang, W. M., & Thiruvengadam, M. (2020). Characterizing the role of the miR156-SPL network in plant development and stress response. [Review]. Plants, 9(9), 1-15. doi: 10.3390/plants9091206 Joshi, B. C., Juyal, V., Sah, A. N., Verma, P., & Mukhija, M. (2022). Review on Documented Medicinal Plants used for the Treatment of Cancer. [Review]. Current Traditional Medicine, 8(2), 2-158. doi: 10.2174/2215083807666211011125110 Khadijeh, A., Heshmat, O., Majid, A. D., & Hasanali, N. B. (2020). A review on the botanical, phytochemical and pharmacological characteristics of kelussia odoratissima mozaff. [Article]. Journal of Medicinal Plants, 18(72). Khanavi, M., Ghadami, S., Sadaghiani-Tabrizi, G., & Delnavazi, M. R. (2021). Phytochemical constituents of the fruits of Kelussia odoratissima Mozaff., an aromatic plant endemic to Iran. [Article]. Journal of Medicinal Plants, 20(79), 1-13. doi: 10.52547/jmp.20.79.1 Konrath, E. L., Arbo, M. D., Arbo, B. D., Hort, M. A., Elisabetsky, E., & Leal, M. B. (2021) Plants with Anti-Addictive Potential. Vol. 1308. Advances in Experimental Medicine and Biology (pp. 185-215). Kuang, X., Du, J.-R., Liu, Y.-X., Zhang, G.-Y., & Peng, H.-Y. (2008). Postischemic administration of Z-Ligustilide ameliorates cognitive dysfunction and brain damage induced by permanent forebrain ischemia in rats. Pharmacology Biochemistry and Behavior, 88(3), 213-221. doi: https://doi.org/10.1016/j.pbb.2007.08.006 Li, L., Xu, J., Yang, D., Tan, X., & Wang, H. (2010). Computational approaches for microRNA studies: a review. Mammalian Genome, 21(1), 1-12. doi: 10.1007/s00335-009-9241-2 Li, W.-X., Oono, Y., Zhu, J., He, X.-J., Wu, J.-M., Iida, K., & Zhu, J.-K. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. The Plant Cell, 20(8), 2238-2251. Li, Z., & Thomas, T. L. (1998). PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis. The Plant Cell, 10(3), 383-398. Lin, K. Y., Wu, S. Y., Hsu, Y. H., & Lin, N. S. (2022). MiR398-regulated antioxidants contribute to Bamboo mosaic virus accumulation and symptom manifestation. [Article]. Plant Physiology, 188(1), 593-607. doi: 10.1093/plphys/kiab451 Liu, H., Shi, J., Wu, M., & Xu, D. (2021). The application and future prospect of RNA-Seq technology in Chinese medicinal plants. [Review]. Journal of Applied Research on Medicinal and Aromatic Plants, 24. doi: 10.1016/j.jarmap.2021.100318 Lu, Q., Guo, F., Xu, Q., & Cang, J. (2020). LncRNA improves cold resistance of winter wheat by interacting with miR398. [Article]. Functional Plant Biology, 47(6), 544-557. doi: 10.1071/FP19267 Lu, Y., Gao, W., & Huang, L. Q. (2018). Synthesis and regulation of secondary metabolites by microRNA in medicinal plants. [Article]. Zhongguo Zhongyao Zazhi, 43(9), 1806-1811. Ma, X., Tang, K., Tang, Z., Dong, A., Xiao, H., Meng, Y., & Wang, P. (2022). An organ-specific transcriptomic atlas of the medicinal plant Bletilla striata: Protein-coding genes, microRNAs, and regulatory networks. [Article]. Plant Genome, 15(2). doi: 10.1002/tpg2.20210 Mandhan, V., Kaur, J., & Singh, K. (2012). smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni. BMC plant biology, 12(1), 1-15. Mangukia, N., Rao, P., Patel, K., Pandya, H., & Rawal, R. M. (2022). Unveiling the nature's fruit basket to computationally identify Citrus sinensis csi-mir169–3p as a probable plant miRNA against Reference and Omicron SARS-CoV-2 genome. [Article]. Computers in Biology and Medicine, 146. doi: 10.1016/j.compbiomed.2022.105502 Mathiyalagan, R., Subramaniyam, S., Natarajan, S., Kim, Y. J., Sun, M. S., Kim, S. Y., & Yang, D. C. (2013). Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer). Ginseng Res, 37(2), 227-247. doi: 10.5142/jgr.2013.37.227 Mehta, A., Gupta, H., Rawal, R., Mankad, A., Tiwari, T., Patel, M., & Ghosh, A. (2016). In silico microRNA identification from stevia rebaudiana transcriptome assembly. European Journal of Medicinal Plants, 1-14. Mercati, F., Fontana, I., Gristina, A. S., Martorana, A., El Nagar, M., De Michele, R., & Carimi, F. (2019). Transcriptome analysis and codominant markers development in caper, a drought tolerant orphan crop with medicinal value. [Article]. Scientific Reports, 9(1). doi: 10.1038/s41598-019-46613-x Mir Drikvand, R., Sohrabi, S. S., Sohrabi, S. M., & Samiei, K. (2019). Identification and characterization of conserved miRNAs of Coriandrum sativum L. using next-generation sequencing data. Crop Biotechnology, 9(25), 59-74. doi: 10.30473/cb.2019.42829.1754 Mirzaei, F., Norouzi, R., Siyadatpanah, A., Mitsuwan, W., Nilforoushzadeh, M., Maleksabet, A., & Hejazi, S. H. (2020). Butanol Fraction of Kelussia odoratissima Mozaff Inhibits the Growth of Leishmania major Promastigote and Amastigote. [Article]. World's Veterinary Journal, 10(2), 254-259. doi: 10.36380/scil.2020.wvj33 Muzaffarian, W. (2007). Umbelliferae. Flora of Iran: Forests and Rangelands Research Institute. Ono, H., Ishii, K., Kozaki, T., Ogiwara, I., Kanekatsu, M., & Yamada, T. (2015). Removal of redundant contigs from de novo RNA-Seq assemblies via homology search improves accurate detection of differentially expressed genes. BMC genomics, 16(1), 1-13. Padmashree, D., & Ramachandraswamy, N. (2016). Identification and characterization of conserved miRNAs with its targets mRNA in Trichinella Spiralis. Bioinformation, 12(5), 279. Palumbo, F., Vannozzi, A., & Barcaccia, G. (2021). Impact of Genomic and Transcriptomic Resources on Apiaceae Crop Breeding Strategies. 22(18), 9713. Park, W., Li, J., Song, R., Messing, J., & Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 12(17), 1484-1495. doi: 10.1016/s0960-9822(02)01017-5 Pirŕ, S., Zanella, L., Kenzo, M., Montesano, C., Minutolo, A., Potesta, M., & Galgani, A. (2016). MicroRNA from moringa oleifera: Identification by high throughput sequencing and their potential contribution to plant medicinal value. [Article]. PLoS ONE, 11(3). doi: 10.1371/journal.pone.0149495 Preston, J. C. (2020). Insights into the evo-devo of plant reproduction using next-generation sequencing approaches. Journal of Experimental Botany, 72(5), 1536-1545. doi: 10.1093/jxb/eraa543 %J Journal of Experimental Botany Quinlan, A. R. (2014). BEDTools: the Swiss‐army tool for genome feature analysis. Current protocols in bioinformatics, 47(1), 11.12. 11-11.12. 34. Ražná, K., Bežo, M., Hlavacková, L., Žiarovská, J., Miko, M., Gažo, J., & Habán, M. (2016). MicroRNA (miRNA) in food resources and medicinal plant. [Article]. Potravinarstvo, 10(1), 188-194. doi: 10.5219/583 Ren, Q., Liu, X. Q., Zhou, X. W., Zhou, X., Fang, G., Wang, B., & Li, X. T. (2021). Effects of Huatan Jiangzhuo decoction on diet-induced hyperlipidemia and gene expressions in rats. [Article]. Chinese Journal of Natural Medicines, 19(2), 100-111. doi: 10.1016/S1875-5364(21)60011-0 Robert-Seilaniantz, A., MacLean, D., Jikumaru, Y., Hill, L., Yamaguchi, S., Kamiya, Y., & Jones, J. D. G. (2011). The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. [Article]. Plant Journal, 67(2), 218-231. doi: 10.1111/j.1365-313X.2011.04591.x Salamon, S., Żok, J., Gromadzka, K., & Błaszczyk, L. (2021). Expression patterns of mir398, mir167, and mir159 in the interaction between bread wheat (Triticum aestivum l.) and pathogenic fusarium culmorum and beneficial trichoderma fungi. [Article]. Pathogens, 10(11). doi: 10.3390/pathogens10111461 Salimi, M., Ebrahimi, A., Shojaee Asadieh, Z., & Saei Dehkordi, S. (2010). Essential oil copmposition of Kelussia odoratissima Mozaff. Iranian Journal of Medicinal Aromatic Plants Research, 26(2), 147-156. Schluttenhofer, C., & Yuan, L. (2017). Challenges towards Revitalizing Hemp: A Multifaceted Crop. [Review]. Trends in Plant Science, 22(11), 917-929. doi: 10.1016/j.tplants.2017.08.004 Singh, K. B., Foley, R. C., & Oñate-Sánchez, L. (2002). Transcription factors in plant defense and stress responses. Current opinion in plant biology, 5(5), 430-436. Slatko, B. E., Gardner, A. F., & Ausubel, F. M. (2018). Overview of Next-Generation Sequencing Technologies. Curr Protoc Mol Biol, 122(1), e59. doi: 10.1002/cpmb.59 Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M., & Kelly, S. (2016). TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome research, 26(8), 1134-1144. Sohrabi, S. S., Ismaili, A., Nazarian, F., & Hossein, F. (2020). Identification and characterization of conserved miRNAs in lentil. Cellular and Molecular Research (Iranian Journal of Biology), 32(4), 432-444. Song, Z. H., Ji, Z. N., Lo, C. K., Dong, T. T., Zhao, K. J., Li, O. T., & Tsim, K. W. (2004). Chemical and biological assessment of a traditional chinese herbal decoction prepared from Radix Astragali and Radix Angelicae Sinensis: orthogonal array design to optimize the extraction of chemical constituents. Planta Med, 70(12), 1222-1227. doi: 10.1055/s-2004-835855 Sorin, C., Declerck, M., Christ, A., Blein, T., Ma, L., Lelandais‐Brière, C., & Hartmann, C. (2014). A mi R 169 isoform regulates specific NF‐YA targets and root architecture in A rabidopsis. New Phytologist, 202(4), 1197-1211. Spyropoulou, E. A., Haring, M. A., & Schuurink, R. C. (2014). RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters. BMC genomics, 15(1), 1-16. Sunkar, R., & Jagadeeswaran, G. (2008). In silico identification of conserved microRNAs in large number of diverse plant species. BMC plant biology, 8(1), 1-13. Torki, A., Hosseinabadi, T., Fasihzadeh, S., Sadeghimanesh, A., Wibowo, J. P., & Lorigooini, Z. (2018). Solubility of calcium oxalate and calcium phosphate crystallization in the presence of crude extract and fractions from Kelussia odoratissima Mozaff. [Article]. Pharmacognosy Research, 10(4), 379-384. doi: 10.4103/pr.pr_68_18 Unver, T., Parmaksiz, I., & Dündar, E. (2010). Identification of conserved micro-RNAs and their target transcripts in opium poppy (Papaver somniferum L.). Plant Cell Rep, 29(7), 757-769. doi: 10.1007/s00299-010-0862-4 Wang, H., & Wang, H. (2015). The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. [Review]. Molecular Plant, 8(5), 677-688. doi: 10.1016/j.molp.2015.01.008 Wang, J., Zhou, Z., Tao, Q., Chen, X., Shui, C., Ren, X., & Liang, M. (2022). Brassica napus miR169 regulates BnaNF-YA in salinity, drought and ABA responses. [Article]. Environmental and Experimental Botany, 199. doi: 10.1016/j.envexpbot.2022.104882 Wang, X., Chen, S., Ma, X., Yssel, A. E. J., Chaluvadi, S. R., Johnson, M. S., & Van Deynze, A. (2021). Genome sequence and genetic diversity analysis of an under-domesticated orphan crop, white fonio (Digitaria exilis). [Article]. GigaScience, 10(3). doi: 10.1093/gigascience/giab013 Xie, F., Frazier, T. P., & Zhang, B. (2010). Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta, 232(2), 417-434. Xie, Z., Allen, E., Fahlgren, N., Calamar, A., Givan, S. A., & Carrington, J. C. (2005). Expression of Arabidopsis MIRNA genes. Plant physiology, 138(4), 2145-2154. Xu, M. Y., Zhang, L., Li, W. W., Hu, X. L., Wang, M.-B., Fan, Y. L., & Wang, L. (2014). Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. Journal of experimental botany, 65(1), 89-101. Yang, R., Zeng, Y., Yi, X., Zhao, L., & Zhang, Y. (2015). Small RNA deep sequencing reveals the important role of microRNAs in the halophyte Halostachys caspica. Plant Biotechnol J, 13(3), 395-408. doi: 10.1111/pbi.12337 Yang, Y., Li, M., & Yi, Y. (2017). The miRNAomes in Rehmannia glutinosa roots exposed to different levels of replanting disease pressure. [Article]. International Journal of Agriculture and Biology, 19(1), 77-84. doi: 10.17957/IJAB/15.0244 Younessi-Hamzekhanlu, M., Ozturk, M., Jafarpour, P., & Mahna, N. (2022). Exploitation of next generation sequencing technologies for unraveling metabolic pathways in medicinal plants: A concise review. [Review]. Industrial Crops and Products, 178. doi: 10.1016/j.indcrop.2022.114669 Yu, D., Lu, J., Shao, W., Ma, X., Xie, T., Ito, H., & Meng, Y. (2019). MepmiRDB: A medicinal plant microRNA database. [Article]. Database, 2019(1). doi: 10.1093/database/baz070 Yu, Z.-X., Wang, L.-J., Zhao, B., Shan, C.-M., Zhang, Y.-H., Chen, D.-F., & Chen, X.-Y. (2015). Progressive Regulation of Sesquiterpene Biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-Targeted SPL Transcription Factors. Molecular Plant, 8(1), 98-110. doi: https://doi.org/10.1016/j.molp.2014.11.002 Zhang, B., Pan, X., & Anderson, T. A. (2006a). MicroRNA: a new player in stem cells. Journal of cellular physiology, 209(2), 266-269. Zhang, B., Pan, X., Cannon, C. H., Cobb, G. P., & Anderson, T. A. (2006b). Conservation and divergence of plant microRNA genes. The Plant Journal, 46(2), 243-259. Zhang, B., Pan, X., Cox, S., Cobb, G., & Anderson, T. (2006c). Evidence that miRNAs are different from other RNAs. Cellular and Molecular Life Sciences CMLS, 63(2), 246-254. Zhao, L., Chen, C., Wang, Y., Shen, J., & Ding, Z. (2019). Conserved MicroRNA act boldly during sprout development and quality formation in pingyang tezaocha (camellia sinensis). [Article]. Frontiers in Genetics, 10(MAR). doi: 10.3389/fgene.2019.00237 Zheng, C., Ye, M., Sang, M., & Wu, R. (2019). A regulatory network for mir156-spl module in arabidopsis thaliana. [Review]. International Journal of Molecular Sciences, 20(24). doi: 10.3390/ijms20246166 Zhu, X., Leng, X., Sun, X., Mu, Q., Wang, B., Li, X., & Fang, J. (2015). Discovery of Conservation and Diversification of miR171 Genes by Phylogenetic Analysis based on Global Genomes. The Plant Genome, 8(2), plantgenome2014.2010.0076. doi: https://doi.org/10.3835/plantgeno me2014.10.0076