بررسی افزایش میزان اسید اولئیک در گیاه گلرنگ با استفاده از تغییرات در ژن Fatty Acid Desaturase-2 پس از به کارگیری روش CRISPR-Cas9

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجو دکتری بیوتکنولوژی کشاورزی، پژوهشگاه بیوتکنولوژی کشاورزی ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

2 استادیار بیوتکنولوژی کشاورزی، پژوهشگاه بیوتکنولوژی کشاورزی ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

3 دانشیار زیست‌شناسی، پژوهشگاه بیوتکنولوژی کشاورزی ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

گیاه دانه‌روغنی گلرنگ از گیاهان بومی ایران است که میزان اسید اولئیک (18:1) آن در تمامی ارقام ایرانی پایین است. روغن‌های دارای سطوح اسید اولئیک بالاتر از 50 درصد به علت وجود یک پیوند دوگانه در اسیداولئیک نسبت به اسیدهای چرب دارای دو یا چند پیوند دوگانه، دارای پایداری اکسیداتیو در برابر حرارت هستند. به‌کارگیری روش‌های مهندسی ژنتیک و ویرایش ژنومی دستیابی به دانه‌های روغنی با اولئیک اسید بالا را ممکن ساخته است. در این پژوهش که به منظور افزایش میزان اسید اولئیک در گیاه گلرنک انجام شد، دو توالی RNAی راهنما برای هدف گیری ژن Fatty Acid Desaturase 2 (FAD2-1) از دو ناحیه طراحی شد که محل هدف گیری آنها درون ناحیه کد کننده این ژن با فاصله 640 جفت باز از یکدیگر قرار داشت. توالی‌های راهنما به‌همراه ژن Cas9 (بهینه‌سازی کدونی شده) در ناحیه T-DNAی سازه اگروباکتریومی کلون‌سازی و به روش In-planta به غوزه گیاه گلرنگ منتقل شد. بذور حاصل کشت و گیاهان حاصل پس از بذرگیری در نسل بعد برای تغییر پروفایل اسیدهای چرب غربال شدند. نتایج نشان داد میزان اسیداولئیک در بذر یکی از لاین‌ها که دارای چهار تغییر اسیدآمینه به طور همزمان بود به طور میانگین به 14/53 درصد رسیده است. این در حالی است که میزان اسید اولئیک در گیاه شاهد به طور میانگین 62/11 درصد اندازه‌گیری شد. نتایج نشان داد در نسل در حال تفرق، تغییر پروفایل اسید چرب در لاین دارای تغییر اسیدآمینه به‌صورت هموزایگوس اتفاق افتاده و گیاهان هتروزایگوس پروفایل روغن مشابه گیاهان شاهد دارند. همچنین نتایج این پژوهش می‌تواند نشان‌دهنده امکان ایجاد افزایش در میزان اسید اولئیک در دانه‌های روغنی با تغییر توالی آنزیم FAD-2 و بدون غیرفعال‌سازی کامل ژن باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the increase of oleic acid in safflower plant by changes in Fatty Acid Desaturase-2 gene after using CRISPR-Cas9 method

نویسندگان [English]

  • Mohamad Amin Neycee 1
  • Motahhareh Mohsenpour 2
  • Hassan Rahnama 3
1 Ph.D. Student in Agriculture Biotechnology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
2 Assistant Professor, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
3 Associate Professor, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
چکیده [English]

Safflower with low oleic acid content is one of the native plants of Iran. Generally,, high oleic acid oils have more oxidative stability than the oils with high linoleic acids . Genome editing technology enable us to obtain oilseeds with high oleic acid. In this research, two guide RNA sequences were designed to target of Fatty Acid Desaturase 2 (FAD2-1) gene, which were located within the coding region and at a distance of 640 base pairs from each other. The guide sequences along with the codon optimized Cas9 gene were cloned in the T-DNA region of the Agrobacterium construct and transferred to the safflower by the In-planta method. The resulting seeds were cultivated and the plants were screened to track changes in the fatty acid profile of the seeds. The results showed that the amount of oleic acid in the seeds of one of the lines reached 53.14% on average. This line had four amino acid changes (L66F, N204D, S236A and I238V) at the same time. This is while the amount of oleic acid in the control plant was measured as 11.62% on average. The results showed that in the segregating generation, the change in fatty acid profile occurred in the line with homozygous amino acid change, and the heterozygous plants have the same oil profile as the control plants. Also, the results of this research can indicate the possibility of increasing the amount of oleic acid in oilseeds by changing the FAD2 enzyme sequence and without gene knockout.

کلیدواژه‌ها [English]

  • Oleic acid
  • Safflower
  • CRISPR-Cas9
  • Fatty Acid Desaturase
Ahmad, S., Tang, L., Shahzad, R., Mawia, A. M., Rao, G. S., Jamil, S., Wei, C., Sheng, Z., Shao, G., Wei, X., Hu, P., Mahfouz, M. M., Hu, S., & Tang, S. (2021). CRISPR-Based Crop Improvements: A Way Forward to Achieve Zero Hunger. https://doi.org/10.1021/acs.jafc.1c02653 Al Amin, N., Ahmad, N., Wu, N., Pu, X., Ma, T., Du, Y., Bo, X., Wang, N., Sharif, R., & Wang, P. (2019). CRISPR-Cas9 mediated targeted disruption of FAD2–2 microsomal omega-6 desaturase in soybean (Glycine max L.). BMC Biotechnology, 19(1), 1-10. Ascherio, A., Katan, M. B., Zock, P. L., Stampfer, M. J., & Willett, W. C. (1999). Trans fatty acids and coronary heart disease. New England Journal of Medicine, 340, 1994-1998. Bassil, E. S., & Kaffka, S. R. (2002). Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: I. Consumptive water use. Agricultural Water Management, 54(1), 67-80. Bi, H., & Yang, B. (2017). Gene Editing With TALEN and CRISPR/Cas in Rice. In Progress in Molecular Biology and Translational Science (1st ed., Vol.149). Elsevier Inc. https://doi.org/10.1016/bs.pmbts.2017.04.006 Cao, S., Zhou, X.-R., Wood, C. C., Green, A. G., Singh, S. P., Liu, L., & Liu, Q. (2013). A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biology, 13(1), 1-18. Chamani Mohasses, F., Solouki, M., Ghareyazie, B., Fahmideh, L., & Mohsenpour, M. (2020). Correlation between gene expression levels under drought stress and synonymous codon usage in rice plant by in-silico study. Plos One, 15(8), e0237334. Choi, Y., & Chan, A. P. (2015). PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16), 2745-2747. Clemente, T. E., & Cahoon, E. B. (2009). Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiology, 151(3), 1030-1040. Demorest, Z. L., Coffman, A., Baltes, N. J., Stoddard, T. J., Clasen, B. M., Luo, S., Retterath, A., Yabandith, A., Gamo, M. E., & Bissen, J. (2016). Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biology, 16(1), 1-8. Do, P. T., Nguyen, C. X., Bui, H. T., Tran, L. T. N., Stacey, G., Gillman, J. D., Zhang, Z. J., & Stacey, M. G. (2019). Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biology, 19(1), 1-14. Ghorbanzadeh, Z., Kazemi Alamouti, M., Pourhang, L., Mousavi Pakzad, S. M., Moatamed, E., Mapar, M., Ebadi, A., Ghaffari, M. R., Hosseini Salekdeh, G., Ghareyazie, B., & Mohsenpour, M. (2022). Identificatioan and investigation of DRO1 gene in rice cultivar Hashemi and its simultaneous transfer with OsCKX4 gene to improve root structure. Crop Biotechnology, 11(36), 49-62. https://doi.org/10.30473/cb.2022.62378.1866 Haun, W., Coffman, A., Clasen, B. M., Demorest, Z. L., Lowy, A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A., & Cedrone, F. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal, 12(7), 934-940. Hussain, M. I., Lyra, D.-A., Farooq, M., Nikoloudakis, N., & Khalid, N. (2016). Salt and drought stresses in safflower: a review. Agronomy for Sustainable Development, 36(1), 1-31. Jahromi, M. G., Rahnama, H., Mousavi, A., & Safarnejad, M. R. (2022). Comparative evaluation of resistance to potato virus Y (PVY) in three different RNAi-based transgenic potato plants. Transgenic Research, 1-11. Jiang, W. Z., Henry, I. M., Lynagh, P. G., Comai, L., Cahoon, E. B., & Weeks, D. P. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnology Journal, 15(5), 648-657. Jung, C., Capistrano-Gossmann, G., Braatz, J., Sashidhar, N., & Melzer, S. (2018). Recent developments in genome editing and applications in plant breeding. Plant Breeding, 137(1), 1-9. https://doi.org/10.1111/pbr.12526 Kazaz, S., Miray, R., Lepiniec, L., & Baud, S. (2022). Plant monounsaturated fatty acids: diversity, biosynthesis, functions and uses. Progress in Lipid Research, 85, 101138. Kazemi alamouti, M., Ghorbanzadeh, Z., Pourhang, L., Mousavi pakzad, S.M., Moatamed, E., Mapar, M., Ebadi, A.A., Ghaffari, M.R., Hosseini Salekdeh, Gh. G. B., & M. M. (2022). Rice genetic engineering using transformation of Deeper Rooting1 and Phosphorus-Starvation Tolerance1 genes. Agricultural Biotechnology Journal, 14(1), 1-22. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling , prediction and analysis. Nature Protocols, 10(6), 845-858. https://doi.org/10.1038/nprot.2015-053 Malboobi, M. A., Zamani, K., Lohrasebi, T., Sarikhani, M. R., Samaian, A., & Sabet, M. S. (2014). Phosphate: the silent challenge. Progress in Biological Sciences, 4(1), 1-32. Mohkami, A., Marashi, H., Shahriary Ahmadi, F., Tohidfar, M., & Mohsenpour, M. (2015). Evaluation of Agrobacterium-mediated Transformation of Chlamydomonas reinhardtii using a Synthetic amorpha-4, 11-diene Synthase Gene. Journal of Cell and Molecular Research, 7(1), 53-58. Mohsenpour, M., Babaeian Jeloudar, N. A., Tohidfar, M., & Habashi, A. A. (2008). Design and construction of four recombinant plasmid vectors containing chitinase, glucanase and BT genes, suitable for plant transformation. Journal of Agricultural Sciences and Natural Resources, 15 (4), 69-80 (In Persian). Mohsenpour, M., Kahak, S., & Ghareyazie, B. (2018). Genetic Engineering and Food Security. Strategic Research Journal of Agricultural Sciences and Natural Resources, 3(2), 195-208. http://srj.asnr.ias.ac.ir/article_112926.html (In Persian). Mohsenpour, M., Tohidfar, M., Jelodar, N. B., & Jouzani, G. S. (2015). Designing a new marker-free and tissue-specific platform for molecular farming applications. Journal of Plant Biochemistry and Biotechnology, 24(4). https://doi.org/10.1007/s13562-014-0294-2 Morineau, C., Bellec, Y., Tellier, F., Gissot, L., Kelemen, Z., Nogué, F., & Faure, J. (2017). Selective gene dosage by CRISPR‐Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnology Journal, 15(6), 729-739. Okuzaki, A., Ogawa, T., Koizuka, C., Kaneko, K., Inaba, M., Imamura, J., & Koizuka, N. (2018). CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiology and Biochemistry, 131, 63-69. Omidi, A., Shahsavari, M., Alhani, A., & Jahanbin, A. (2011). Selection of New Safflower (Carthamus tintorius L.) Genotypes for Different Climatic Conditions Using some Stability Parameters. Seed and Plant Journal, 27(3), 287-303. https://doi.org/10.22092/spij.2017.111065 Ortega, J., Lopez‐Hernandez, A., Garcia, H. S., & Hill Jr, C. G. (2004). Lipase‐mediated acidolysis of fully hydrogenated soybean oil with conjugated linoleic acid. Journal of Food Science, 69(1), FEP1-FEP6. Paseban Islam, B. (2001). Safflower. East Azarbayejan Jahade Keshavarzi, 694, 1-2. Porokhovinova, E. A., Matveeva, T. V, Khafizova, G. V., Bemova, V. D., Doubovskaya, A. G., Kishlyan, N. V, Podolnaya, L. P., & Gavrilova, V. A. (2022). Fatty acid composition of oil crops: genetics and genetic engineering. Genetic Resources and Crop Evolution, 1-17. Pourdad, S. S., & Mohammadi, R. (2008). Use of Stability Parameters for Comparing Safflower Genotypes. Asian Journal of Plant Sciences, 7(1), 100-104. Rao, M. J., & Wang, L. (2021). CRISPR / Cas9 technology for improving agronomic traits and future prospective in agriculture. Planta, 254(4), 1-16. https://doi.org/10.1007/s00425-021-03716-y Razzaq, A., Saleem, F., Kanwal, M., Mustafa, G., Yousaf, S., Muhammad, H., Arshad, I., Hameed, M. K., Khan, M. S., & Joyia, F. A. (2019). Modern Trends in Plant Genome Editing : An Inclusive Review of the CRISPR / Cas9 Toolbox. Salehian, H., Rahnama, H., Dezhsetan, S., & Babaei, S. (2021). Constitutive expression of a synthetic cry1Ab gene confers resistance to potato tuber moth (Phthorimaea operculella Zeller) larva. Crop Breeding and Applied Biotechnology, 21. Shafiei-Koij, F., Ravichandran, S., Barthet, V. J., Rodrigue, N., Mirlohi, A., Majidi, M. M., & Cloutier, S. (2020). Evolution of Carthamus species revealed through sequence analyses of the fad2 gene family. Physiology and Molecular Biology of Plants, 26(3), 419-432. Subedi, U., Jayawardhane, K. N., Pan, X., Ozga, J., & Chen, G. (2020). The Potential of Genome Editing for Improving Seed Oil Content and Fatty Acid Composition in Oilseed Crops. https://doi.org/10.1002/lipd.12249 Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. Teres, S., Barceló-Coblijn, G., Benet, M., Alvarez, R., Bressani, R., Halver, J. E., & Escriba, P. V. (2008). Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proceedings of the National Academy of Sciences, 105(37), 13811-13816. Tohidfar, M., & Mohsenpour, M. (2010). Effective factors in cotton (Gossipium spp.) transformation using Agrobacterium. Agricultural Biotechnology Journal, 2 (1), 1-24 (In Persian). Townson, J. (2017). Review article Recent developments in genome editing for potential use in plants. Bioscience Horizons, 10(November), 1-17. https://doi.org/10.1093/biohorizons/hzx016 White, P. J. (2007). Fatty acids in oilseeds (vegetable oils). In Fatty acids in foods and their health implications (pp. 241-276). CRC Press. Wolt, J. D., Wang, K., & Yang, B. (2016). The Regulatory Status of Genome-edited Crops. Plant Biotechnology Journal, 14(2), 510-518. https://doi.org/10.1111/pbi.12444 Yates, C. M., Filippis, I., Kelley, L. A., & Sternberg, M. J. E. (2014). SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features. Journal of Molecular Biology, 426(14), 2692-2701. Younes Sinki, N. (2008). Evaluation of oil quantitative and qualitative characteristics in safflower varieties produced at 2009. Aftaabgardan (In Persian). Zandi, M., Hosseini, R., Mohsenpour, M., HOSSEINI, S. G., & Ghareyazie, B. (2019). Transformation of DRO1, OsNAC5, OsEXPA8 genes in order to improve rice root architecture modification and improved drought tolerance in rice. Gene Eng Biosafety J 8(1), 77-89 (In Persian).