با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : مروری

نویسندگان

1 ژنتیک مولکولی، دانشکده پردیس گیلان، دانشگاه گیلان، رشت، ایران.

2 دانشیار، گروه زیست شناسی، دانشگاه گیالن، رشت، ایران

3 بخش زیست‌شناسی سامانه‌ها، پژوهشگاه بیوتکنولوژی کشاورزی ایران، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران.

4 بخش بیوتکنولوژی میکروبی، بژوهشگاه بیوتکنولوژی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

گیاهان با ترکیبات خاص در ترشحات ریشه خود می‌توانند جامعه میکروبی خاصی را در ریزوسفر تقویت کنند و از اجتماع جامعه میکروبی مضر برای خود جلوگیری کنند. ریزوسفر منطقه‌ای پویا اطراف ریشه گیاه ‌است که توسط برهمکنش بین گیاه و میکروارگانیسم‌ها اداره می‌شود. ترشحات ریشه گیاه می‌تواند تحت تاثیر گونه گیاه، مراحل رشد گیاه و شرایط تنش قرار گیرد و متفاوت باشد؛ بنابراین هر سویه میکروبی می‌تواند بیان ژن‌های خود را در هر مرحله از رشد گیاه تنظیم کند. میکروب‌ها منبع ناشناخته و عظیمی از متابولیت‌های ثانویه هستند که نقش بسیار مهمی در عرصه درمانی و دیگر صنایع دارند. مطالعه مروری حاضر بر روی عوامل القا کننده تولید متابولیت‌های ثانویه جدید از میکروب‌های ریزوسفری تمرکز دارد. هر سویه میکروبی پتانسیل تولید چندین ترکیب را دارد اما با توجه به این‌که تولید متایولیت‌های ثانویه برای سلول بسیار هزینه بر است، سنتز آن‌ها توسط سلول بسیار کنترل شده است. مطالعات نشان داده که تغییر شرایط رشد میکروب‌ها، مانند: دما، شوری، کشت توام (باکتری-باکتری، قارچ-قارچ، باکتری-قارچ)، تغییر غلظت اکسیژن، سرعت هوادهی، افزودن عناصر خاکی و یون‌های فلزی کمیاب، تابش نور و همچنین روش‌های مهندسی ژنتیک مانند: قرار دادن پروموتر‌های قوی القایی، مهندسی ریبوزوم، بازآرایی کروماتین و بیان بیش از حد ژن‌های تنظیم کننده خاص مسیر و مولکول‌های کوچک و محرک شیمیایی‌ می‌تواند به کشف ترکیبات جدید‌ کمک کند. در این مطالعه موارد فوق به تفضیل تشریح شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating factors affecting the diversity and production of ‎secondary‏ ‏metabolites from mysterious genes of rhizosphere microbes

نویسندگان [English]

  • maryam sajedmarani 1
  • Soheila Talesh Sasani 2
  • Shohreh Ariaeenejad 3
  • Akram Sadeghi 4

1 Molecular Genetics Department, Gilan Campus Faculty, Rasht, Iran.‌

2 Associate Prof. Biology Department, Faculty of Science, University of Guilan, Rasht, IRAN

3 Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran. Karaj, Iran.

4 Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

چکیده [English]

Plants with special compounds in their root exudates can strengthen a specific microbial community in the rhizosphere and prevent harmful microbial community from forming. The rhizosphere is a dynamic region around the plant root that is governed by the interaction between the plant and microorganisms. Plant root secretions can be influenced by plant species, plant growth stages and stress conditions and can be different; therefore, each microbial strain can regulate the expression of its genes at each stage of plant growth. Microbes are an unknown and huge source of secondary metabolites that play a very important role in the field of medicine and other industries. The present review focuses on factors inducing the production of new secondary metabolites from rhizosphere microbes. Each microbial strain has the potential to produce several compounds, but considering that the production of secondary metabolites is very costly for the cell, their synthesis is highly controlled by the cell. Studies have shown that changing the growth conditions of microbes, such as: temperature, salinity, co-cultivation (bacteria-bacteria, fungi-fungi, bacteria-fungi), change in oxygen concentration, aeration speed, addition of soil elements and rare metal ions, light radiation and also genetic engineering methods such as: insertion of strong inducible promoters, ribosome engineering, chromatin rearrangement, overexpression of pathway-specific regulatory genes and small molecules and chemical stimuli can help to discover new compounds. In this study, the above cases are explained in detail.

کلیدواژه‌ها [English]

  • Induction
  • Plant root secretions
  • Rhizosphere microbes
  • Secondary metabolite
Abbasi, S., Safaie, N., Sadeghi, A., Shamsbakhsh, M. (2019). Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms. Frontiers in Microbiology, 10:1505. Abbasi, S., Spor, A., Sadeghi, A., & Safaie, N. (2021). Streptomyces strains modulate dynamics of soil bacterial communities and their efficacy in disease suppression caused by Phytophthora capsici. Scientific reports, 11: 9317. Abdelwahab, M. F., Kurtán, T., Mándi, A., Müller, W. E., Fouad, M. A., Kamel, M. S., ... & Proksch, P. (2018). Induced secondary metabolites from the endophytic fungus Aspergillus versicolor through bacterial co-culture and OSMAC approaches. Tetrahedron Letters, 59 (27), 2647-2652.‏ Ahn, Y. O., Shimizu, B. I., Sakata, K., Gantulga, D., Zhou, Z., Bevan, D. R., & Esen, A. (2010). Scopolin-hydrolyzing β-glucosidases in roots of Arabidopsis. Plant and Cell Physiology, 51 (1), 132-143.‏ Akbari, A. R., Gharanjik, S., Koobaz, P., Karimi, E., & Sadeghi, A. (2016). 'Evaluation of Mutual Effect of Ectoine(s) producing Streptomyces and wheat at salt conditions', Crop Biotechnology, 6 (13), 57-68. Buhian, W. P., & Bensmihen, S. (2018). Mini-review: nod factor regulation of phytohormone signaling and homeostasis during rhizobia-legume symbiosis. Frontiers in plant science, 9, 1247. Bentley, S. D., Chater, K. F., Cerdeño-Tárraga, A. M., Challis, G. L., Thomson, N. R., James, K. Bode, H. B., Bethe, B., Höfs, R., & Zeeck, A. (2002). Big effects from small changes: possible ways to explore nature's chemical diversity. ChemBioChem, 3 (7), 619-627.‏ Banerjee, G., Ray, A. K., & Kumar, R. (2016). Effect of temperature on lateral gene transfer efficiency of multi-antibiotics resistant bacterium, Alcaligenes faecalis. Sains Malays, 45, 909-914.‏ Bok, J. W., Soukup, A. A., Chadwick, E., Chiang, Y. M., Wang, C. C., & Keller, N. P. (2013). VeA and MvlA repression of the cryptic orsellinic acid gene cluster in Aspergillus nidulans involves histone 3 acetylation. Molecular microbiology, 89 (5), 963-974.‏ Bok, J. W., & Keller, N. P. (2004). LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryotic cell, 3 (2), 527-535.‏ Cotton, T. A., Pétriacq, P., Cameron, D. D., Meselmani, M. A., Schwarzenbacher, R., Rolfe, S. A., & Ton, J. (2019). Metabolic regulation of the maize rhizobiome by benzoxazinoids. The ISME journal, 13 (7), 1647-1658.‏ Chai, Y. J., Cui, C. B., Li, C. W., Wu, C. J., Tian, C. K., & Hua, W. (2012). Activation of the dormant secondary metabolite production by introducing gentamicin-resistance in a marine-derived Penicillium purpurogenum G59. Marine drugs, 10 (3), 559-582.‏ Cueto, M., Jensen, P. R., Kauffman, C., Fenical, W., Lobkovsky, E., & Clardy, J. (2001). Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. Journal of Natural Products, 64 (11), 1444-1446.‏ Cui, C. B., Kakeya, H., & Osada, H. (1996). Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron, 52 (39), 12651-12666.‏ Chatterjee, S., Kumari, S., Rath, S., Priyadarshanee, M., & Das, S. (2020). Diversity, structure and regulation of microbial metallothionein: Metal resistance and possible applications in sequestration of toxic metals. Metallomics, 12 (11), 1637-1655.‏ Desurmont, G. A., Harvey, J., van Dam, N. M., Cristescu, S. M., Schiestl, F. P., Cozzolino, S., ... & Turlings, T. C. (2014). Alien interference: disruption of infochemical networks by invasive insect herbivores. Plant, Cell & Environment, 37 (8), 1854-1865.‏ Darabpour, E. M. R. A., Ardakani, M. R., Motamed, H., Ronagh, M. T., & Najafzadeh, H. (2012). Purification and optimization of production conditions of a marine-derived antibiotic and ultra-structural study on the effect of this antibiotic against MRSA. European Review for Medical & Pharmacological Sciences, 16 (2).‏ Dinarvand, M., Rezaee, M., Masomian, M., Jazayeri, S. D., Zareian, M., Abbasi, S., & Ariff, A. B. (2013). Effect of C/N ratio and media optimization through response surface methodology on simultaneous productions of intra-and extracellular inulinase and invertase from Aspergillus niger ATCC 20611. BioMed research international, 2013.‏ Dos Santos, J. D. N., João, S. A., Martín, J., Vicente, F., Reyes, F., & Lage, O. M. (2022). iChip-inspired isolation, bioactivities and Dereplication of Actinomycetota from Portuguese Beach sediments. Microorganisms, 10(7), 1471.‏ Frost, L. S., Leplae, R., Summers, A. O., & Toussaint, A. (2005). Mobile genetic elements: the agents of open source evolution. Nature Reviews Microbiology, 3(9), 722-732.‏ Feller, G., Narinx, E., Arpigny, J. L., Zekhnini, Z., Swings, J., & Gerday, C. (1994). Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria. Applied microbiology and biotechnology, 41, 477-479.‏ Fuchser, J., Thiericke, R., & Zeeck, A. (1995). Biosynthesis of aspinonene, a branched pentaketide produced by Aspergillus ochraceus, related to aspyrone. Journal of the Chemical Society, Perkin Transactions 1, (13), 1663-1666.‏ Fashola, M. O., Ngole-Jeme, V. M., & Babalola, O. O. (2016). Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. International journal of environmental research and public health, 13(11), 1047.‏ Gebhard, F., & Smalla, K. (1998). Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Applied and Environmental Microbiology, 64(4), 1550-1554.‏ Hashimoto, M., Hasegawa, H., & Maeda, S. (2019). High temperatures promote cell-to-cell plasmid‌‌‌ transformation in Escherichia coli. Biochemical and biophysical research communications, 515(1), 196-200.‏ Hemphill, C. F. P., Sureechatchaiyan, P., Kassack, M. U., Orfali, R. S., Lin, W., Daletos, G., & Proksch, P. (2017). OSMAC approach leads to new fusarielin metabolites from Fusarium tricinctum. The Journal of antibiotics, 70(6), 726-732.‏ Hui, N., Jumpponen, A., Francini, G., Kotze, D. J., Liu, X., Romantschuk, M., ... & Setälä, H. (2017). Soil microbial communities are shaped by vegetation type and park age in cities under cold climate. Environmental microbiology, 19(3), 1281-1295.‏ Imai, Y., Fujiwara, T., Ochi, K., & Hosaka, T. (2012). Development of the ability to produce secondary metabolites in Streptomyces through the acquisition of erythromycin resistance. The Journal of Antibiotics, 65(6), 323-326.‏ Inaoka, T., & Ochi, K. (2011). Scandium stimulates the production of amylase and bacilysin in Bacillus subtilis. Applied and environmental microbiology, 77(22), 8181-8183.‏ Jensen, P. R., & Fenical, W. (1996). Marine bacterial diversity as a resource for novel microbial products. Journal of industrial microbiology, 17, 346-351.‏ Jin, J., Wang, M., Lu, W., Zhang, L., Jiang, Q., Jin, Y., ... & Xiao, M. (2019). Effect of plants and their root exudate on bacterial activities during rhizobacterium–plant remediation of phenol from water. Environment international, 127, 114-124.‏ Kanchanabanca, C., Hosaka, T., & Kojima, M. (2024). High-intensity green light potentially activates the actinorhodin biosynthetic pathway in Streptomyces coelicolor A3 (2). Archives of Microbiology, 206(1), 8. Knudsen, J. T., Eriksson, R., Gershenzon, J., & Ståhl, B. (2006). Diversity and distribution of floral scent. The botanical review, 72(1), 1-120.‏ Kouroshnia, A., Zeinali, S., Irani, S., & Sadeghi, A. (2022) . Induction of apoptosis and cell cycle arrest in colorectal cancer cells by novel anticancer metabolites of Streptomyces sp. 801. Cancer Cell International, 22, 235. Kudjordjie, E. N., Sapkota, R., Steffensen, S. K., Fomsgaard, I. S., & Nicolaisen, M. (2019). Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome, 7(1), 1-17. Kamauchi, H., Kinoshita, K., Sugita, T., & Koyama, K. (2016). Conditional changes enhanced production of bioactive metabolites of marine derived fungus Eurotium rubrum. Bioorganic & Medicinal Chemistry Letters, 26(20), 4911-4914.‏ Kawai, K., Wang, G., Okamoto, S., & Ochi, K. (2007). The rare earth, scandium, causes antibiotic overproduction in Streptomyces spp. FEMS microbiology letters, 274(2), 311-315.‏ Lyu, D., & Smith, D. L. (2022). The root signals in rhizospheric inter-organismal communications. Frontiers in Plant Science, 13, 5328.‏ Lyu, D., Backer, R., Subramanian, S., & Smith, D. L. (2020). Phytomicrobiome coordination signals hold potential for climate change-resilient agriculture. Frontiers in Plant Science, 11, 634.‏ Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant molecular biology, 90, 575-587.‏ Lorenz, M. G., Reipschläger, K., & Wackernagel, W. (1992). Plasmid transformation of naturally competent Acinetobacter calcoaceticus in non-sterile soil extract and groundwater. Archives of microbiology, 157, 355-360.‏ Laureti, L., Song, L., Huang, S., Corre, C., Leblond, P., Challis, G. L., & Aigle, B. (2011). Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proceedings of the National Academy of Sciences, 108(15), 6258-6263.‏ Martín-Aragón, V. R., Millán, F. R., Cuadrado, C., Daranas, A. H., Medarde, A. F., & López, J. M. S. (2023). Induction of new aromatic polyketides from the marine actinobacterium Streptomyces griseorubiginosus through an OSMAC approach. Marine Drugs, 21(10), 526.‏ Mönchgesang, S., Strehmel, N., Schmidt, S., Westphal, L., Taruttis, F., Müller, E., ... & Scheel, D. (2016). Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Scientific Reports, 6(1), 29033. Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H. (2016). Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of environmental management, 174, 14-25.‏ Mhlongo, M. I., Piater, L. A., Madala, N. E., Labuschagne, N., & Dubery, I. A. (2018). The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Frontiers in Plant Science, 9, 112.‏ Maharjan, S., Oh, T. J., Lee, H. C., & Sohng, J. K. (2009). Identification and functional characterization of an afsR homolog regulatory gene from Streptomyces venezuelae ATCC 15439. Journal of Microbiology and Biotechnology, 19(2), 121-127.‏ Maddocks, S. E., & Oyston, P. C. (2008). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology, 154(12), 3609-3623.‏ Moore, J. M., Bradshaw, E., Seipke, R. F., Hutchings, M. I., & McArthur, M. (2012). Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria. In Methods in enzymology (Vol. 517, pp. 367-385). Academic Press.‏ Moody, S. C. (2014). Microbial co-culture: harnessing intermicrobial signaling for the production of novel antimicrobials. Future Microbiology, 9(5), 575-578.‏ Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H. (2016). Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of environmental management, 174, 14-25.‏ Middleton, H., Monard, C., Daburon, V., Clostres, E., Tremblay, J., Yergeau, É., & Amrani, A. E. (2022). Plants release miRNAs in the rhizosphere, targeting microbial genes. BioRxiv, 2022-07.‏ Nothaft, H., Rigali, S., Boomsma, B., Swiatek, M., McDowall, K. J., Van Wezel, G. P., & Titgemeyer, F. (2010). The permease gene nagE2 is the key to N‐acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi‐level control. Molecular microbiology, 75(5), 1133-1144.‏ Nichols, D., Cahoon, N., Trakhtenberg, E. M., Pham, L., Mehta, A., Belanger, A., ... & Epstein, S. (2010). Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Applied and environmental microbiology, 76(8), 2445-2450.‏ Ochi, K., Okamoto, S., Tozawa, Y., Inaoka, T., Hosaka, T., Xu, J., & Kurosawa, K. (2004). Ribosome engineering and secondary metabolite production. Advances in applied microbiology, 56(56), 155-179.‏ Ola A. R, Thomy D., Lai D., Brotz-Oesterhelt H., & Proksch P. (2013). Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. Journal of Natural Products, 76(11):2094–2099 Piddock, L. J. (2015). Teixobactin, the first of a new class of antibiotics discovered by iChip technology?. Journal of Antimicrobial Chemotherapy, 70(10), 2679-2680.‏ Peng, X. P., Wang, Y., Liu, P. P., Hong, K., Chen, H., Yin, X., & Zhu, W. M. (2011). Aromatic compounds from the halotolerant fungal strain of Wallemia sebi PXP-89 in a hypersaline medium. Archives of pharmacal research, 34, 907-912.‏ Rutledge, P. J., & Challis, G. L. (2015). Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature reviews microbiology, 13(8), 509-523.‏ Ross, A. C., Gulland, L. E., Dorrestein, P. C., & Moore, B. S. (2015). Targeted capture and heterologous expression of the Pseudoalteromonas alterochromide gene cluster in Escherichia coli represents a promising natural product exploratory platform. ACS synthetic biology, 4(4), 414-420.‏ Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in biotechnology, 28(3), 142-149.‏ Rono, J. K., Le Wang, L., Wu, X. C., Cao, H. W., Zhao, Y. N., Khan, I. U., & Yang, Z. M. (2021). Identification of a new function of metallothionein-like gene OsMT1e for cadmium detoxification and potential phytoremediation. Chemosphere, 265, 129136.‏ Rigali, S., Titgemeyer, F., Barends, S., Mulder, S., Thomae, A. W., Hopwood, D. A., & Van Wezel, G. P. (2008). Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO reports, 9(7), 670-675.‏ Sadeghi, A., Koobaz, P., Azimi, H., Karimi, E., & Akbari, A. R. (2017). Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces. BioControl, 62, 805-819.‏ Sheng, L., Zhao, W., Yang, X., Mao, H., & Zhu, S. (2023). Response characteristics of rhizosphere microbial community and metabolites of Iris tectorum to Cr stress. Ecotoxicology and Environmental Safety, 263, 115218. Stringlis, I. A., Yu, K., Feussner, K., de Jonge, R., Van Bentum, S., Van Verk, M. C., ... & Pieterse, C. M. (2018). MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proceedings of the National Academy of Sciences, 115(22), E5213-E5222.‏ Stewart, G. J. (1989). The mechanism of natural transfomiation. In" Gene Transfer in the Environment."(Levy, SB, and Miller, RV eds.).‏ Shao, Z., Rao, G., Li, C., Abil, Z., Luo, Y., & Zhao, H. (2013). Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS synthetic biology, 2(11), 662-669.‏ Shwab, E. K., Bok, J. W., Tribus, M., Galehr, J., Graessle, S., & Keller, N. P. (2007). Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryotic cell, 6(9), 1656-1664.‏ Tholl, D., Chen, F., Petri, J., Gershenzon, J., & Pichersky, E. (2005). Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. The Plant Journal, 42(5), 757-771.‏ Tan, S., Yang, C., Mei, X., Shen, S., Raza, W., Shen, Q., & Xu, Y. (2013). The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Applied Soil Ecology, 64, 15-22.‏ van Wezel, G. P., & McDowall, K. J. (2011). The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Natural product reports, 28(7), 1311-1333.‏ Van Deynze, A., Zamora, P., Delaux, P. M., Heitmann, C., Jayaraman, D., Rajasekar, S., ... & Bennett, A. B. (2018). Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS biology, 16(8), e2006352.‏ Venturi, V., & Keel, C. (2016). Signaling in the rhizosphere. Trends in plant science, 21(3), 187-198.‏ VanderMolen, K. M., Darveaux, B. A., Chen, W. L., Swanson, S. M., Pearce, C. J., & Oberlies, N. H. (2014). Epigenetic manipulation of a filamentous fungus by the proteasome-inhibitor bortezomib induces the production of an additional secondary metabolite. RSC advances, 4(35), 18329-18335.‏ Wu, L., Weston, L. A., Zhu, S., & Zhou, X. (2023). Rhizosphere Interactions: Root Exudates and Rhizosphere Microbiome. Frontiers in Plant Science, 14, 1281010.‏ D., ... & Hopwood, D. A. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). nature, 417(6885), 141-147.‏ Wang, Y., Kou, S., Jiang, Q., Xu, B., Liu, X., Xiao, J., ... & Xiao, M. (2014). Factors affecting transfer of degradative plasmids between bacteria in soils. Applied soil ecology, 84, 254-261.‏ Waldron, C., Matsushima, P., Rosteck, P. R., Broughton, M. C., Turner, J., Madduri, K., ... & Baltz, R. H. (2001). Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa1. Chemistry & biology, 8(5), 487-499.‏ Wang, F. Z., Wei, H. J., Zhu, T. J., Li, D. H., Lin, Z. J., & Gu, Q. Q. (2011). Three new cytochalasins from the marine‐derived fungus Spicaria elegans kla03 by supplementing the cultures with L‐and D‐tryptophan. Chemistry & Biodiversity, 8(5), 887-894.‏ Wijeratne, E. K., Carbonezi, C. A., Takahashi, J. A., Seliga, C. J., Turbyville, T. J., Pierson, E. E., ... & Gunatilaka, A. L. (2004). Isolation, optimization of production and structure-activity relationship studies of monocillin I, the cytotoxic constituent of Paraphaeosphaeria quadriseptata. The Journal of Antibiotics, 57(8), 541-546.‏ Wang, Y., Kou, S., Jiang, Q., Xu, B., Liu, X., Xiao, J., ... & Xiao, M. (2014). Factors affecting transfer of degradative plasmids between bacteria in soils. Applied soil ecology, 84, 254-261.‏ Zhao, M., Zhao, J., Yuan, J., Hale, L., Wen, T., Huang, Q., ... & Shen, Q. (2021). Root exudates drive soil‐microbe‐nutrient feedbacks in response to plant growth. Plant, Cell & Environment, 44(2), 613-628.‏ Zeng, H., Xu, H., Liu, G., Wei, Y., Zhang, J., & Shi, H. (2021). Physiological and metagenomic strategies uncover the rhizosphere bacterial microbiome succession underlying three common environmental stresses in cassava. Journal of Hazardous Materials, 411, 125143.‏ Złoch, M., Thiem, D., Gadzała-Kopciuch, R., & Hrynkiewicz, K. (2016). Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere, 156, 312-325.‏ Xu, S., Li, M., Hu, Z., Shao, Y., Ying, J., & Zhang, H. (2023). The potential use of fungal co-culture strategy for discovery of new secondary metabolites. Microorganisms, 11, 464.