Borovskii, G. B., Stupnikova, I. V., Antipina, A. I., Vladimirova, S. V., & Voinikov, V. K. (2002). Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biology, 2, 1-7.
Decena, M. A., Gálvez-Rojas, S., Agostini, F., Sancho, R., Contreras-Moreira, B., Des Marais, D. L., Hernandez, P., & Catalán, P. (2021). Comparative genomics, evolution, and drought-induced expression of dehydrin genes in model Brachypodium grasses. Plants, 10(12), 2664-2681.
Koag, M.-C., Wilkens, S., Fenton, R. D., Resnik, J., Vo, E., & Close, T. J. (2009). The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant physiology, 150(3), 1503-1514.
Malik, A. A., Veltri, M., Boddington, K. F., Singh, K. K., & Graether, S. P. (2017). Genome analysis of conserved dehydrin motifs in vascular plants. Frontiers in plant science, 8, 252-268.
Saavedra, L., Svensson, J., Carballo, V., Izmendi, D., Welin, B., & Vidal, S. (2006). A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. The Plant Journal, 45(2), 237-249.
Sun, Y., Liu, L., Sun, S., Han, W., Irfan, M., Zhang, X., Zhang, L., & Chen, L. (2021). AnDHN, a dehydrin protein from Ammopiptanthus nanus, mitigates the negative effects of drought stress in plants. Frontiers in plant science, 12, 788-838.
Velasco-Conde, T., Yakovlev, I., Majada, J. P., Aranda, I., & Johnsen, Ø. (2012). Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree genetics & genomes, 8, 957-973.
Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., & Covarrubias, A. A. (2008). The enigmatic LEA proteins and other hydrophilins. Plant physiology, 148(1), 6-24.
Borovskii, G. B., Stupnikova, I. V., Antipina, A. I., Vladimirova, S. V., & Voinikov, V. K. (2002). Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biology, 2, 1-7.
Close, T. J., Kortt, A. A., & Chandler, P. M. (1989). A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant molecular biology, 13, 95-108.
Danyluk, J., Houde, M., Rassart, É., & Sarhan, F. (1994). Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS letters, 344(1), 20-24.
Decena, M. A., Gálvez-Rojas, S., Agostini, F., Sancho, R., Contreras-Moreira, B., Des Marais, D. L., Hernandez, P., & Catalán, P. (2021). Comparative genomics, evolution, and drought-induced expression of dehydrin genes in model Brachypodium grasses. Plants, 10(12), 2664-2681.
Farah Yachash, S., Nazeri, S., & Mino Chehar, Z. (2019). In silico investigation of the process of molecular evolution and expansion of the geranyl geranyl diphosphate synthase protein family in plants. Journal of Cellular and Molecular Research (Iranian Biology Journal), 33(3), 326-342.
Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., & Masmoudi, K. (2011). Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant signaling & behavior, 6(10), 1503-1509.
Jiménez-Bremont, J. F., Maruri-López, I., Ochoa-Alfaro, A. E., Delgado-Sánchez, P., Bravo, J., & Rodríguez-Kessler, M. (2013). LEA gene introns: is the intron of dehydrin genes a characteristic of the serine-segment? Plant Molecular Biology Reporter, 31, 128-140.
Lan, T., Gao, J., & Zeng, Q.-Y. (2013). Genome-wide analysis of the LEA (late embryogenesis abundant) protein gene family in Populus trichocarpa. Tree genetics & genomes, 9, 253-264.
Liu, C.-C., Li, C.-M., Liu, B.-G., Ge, S.-J., Dong, X.-M., Li, W., Zhu, H.-Y., Wang, B.-C., & Yang, C.-P. (2012). Genome-wide identification and characterization of a dehydrin gene family in poplar (Populus trichocarpa). Plant Molecular Biology Reporter, 30, 848-859.
Saavedra, L., Svensson, J., Carballo, V., Izmendi, D., Welin, B., & Vidal, S. (2006). A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. The Plant Journal, 45(2), 237-249.
Sheikh Asadi, M., Naderi, R., Kafi, M., Fatahi Moghadam, M., & Eslami, A. (2019). Study of molecular phylogeny and structure of matk protein in Lilium ledebourii [Baker] Boiss. Journal of plant production research, 27(4), 181-191.
Smith, M. A., & Graether, S. P. (2022). The disordered dehydrin and its role in plant protection: A biochemical perspective. Biomolecules, 12(2), 294-307.
Stival Sena, J., Giguère, I., Rigault, P., Bousquet, J., & Mackay, J. (2018). Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. Tree Physiology, 38(3), 442-456.
Sun, X., Xi, D. H., Feng, H., Du, J. B., Lei, T., Liang, H. G., & Lin, H. H. (2009). The dual effects of salicylic acid on dehydrin accumulation in water-stressed barley seedlings. Russian journal of plant physiology, 56, 348-354.
Sun, Y., Liu, L., Sun, S., Han, W., Irfan, M., Zhang, X., Zhang, L., & Chen, L. (2021). AnDHN, a dehydrin protein from Ammopiptanthus nanus, mitigates the negative effects of drought stress in plants. Frontiers in plant science, 12, 788-838.
Tripepi, M., Pöhlschroder, M., & Beatrice Bitonti, M. (2011). Diversity of dehydrins in Oleae europaea plants exposed to stress. The Open Plant Science Journal, 5(1), 308-320.
Velasco-Conde, T., Yakovlev, I., Majada, J. P., Aranda, I., & Johnsen, Q. (2012). Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree genetics & genomes, 8, 957-973.
Verma, G., Dhar, Y. V., Srivastava, D., Kidwai, M., Chauhan, P. S., Bag, S. K., Asif, M. H., & Chakrabarty, D. (2017). Genome-wide analysis of rice dehydrin gene family: Its evolutionary conservedness and expression pattern in response to PEG induced dehydration stress. PLoS One, 12(5), 176-193..
Yang, Y., He, M., Zhu, Z., Li, S., Xu, Y., Zhang, C., Singer, S. D., & Wang, Y. (2012). Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biology, 12, 1-17.
Yousef Zaei, S., Mahdinjad, N., Fakheri, B., & Ganjali, P. (2019). Identification of DHN5 gene and investigation of its evolutionary relationships in cultivated wheat and its ancestors. Modern genetics, 15(4), 361-370.
Zan, T., Li, L., Li, J., Zhang, L., & Li, X. (2020). Genome-wide identification and characterization of late embryogenesis abundant protein-encoding gene family in wheat: evolution and expression profiles during development and stress. Gene, 736, 1444-1452.
Zhang, J., Xia, H., Liang, D., Lin, L., Deng, H., Lv, X., Wang, Z., Wang, J., & Xiong, B. (2021). Genome-wide identification and expression profiling of the dehydrin gene family in Actinidia chinensis. Scientia Horticulturae, 280, 1099-1130.