بررسی صفات زراعی و بیوشیمیایی لاین های هاپلوئید مضاعف شده کاملینا در شرایط دیم کرمانشاه

نوع مقاله : علمی پژوهشی

نویسندگان

1 مؤسسه تحقیقات کشاورزی دیم کشور، معاونت سرارود، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران

2 گــروه بیوتکنولــوژی، دانشــکده کشــاورزی،دانشگاه تربیت مدرس، تهران، ایران

3 مؤسسه تحقیقات کشاورزی دیم کشور، معاونت سرارود، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران.

10.30473/cb.2026.73533.2002

چکیده

کاملینا به دلیل سازگاری با شرایط آب‌وهوایی سخت، به عنوان یک منبع پایدار و سازگار با محیط زیست برای تولید روغن و سوخت زیستی شناخته می‌شود. در این پژوهش تعداد 134 لاین هاپلوئید مضاعف شده کاملینا به‌صورت آزمایش آگمنت از نظر صفات زراعی و بیوشیمیایی در شرایط دیم مورد ارزیابی قرار گرفتند. بذور هر لاین خالص در یک واحد آزمایشی و در چهار ردیف یک متری در معاونت موسسه تحقیقات کشاورزی دیم (کرمانشاه) کشت شدند. صفات مورد اندازه‌گیری شامل عملکرد دانه در واحد سطح، ارتفاع بوته، روز تا گل‌دهی، روز تا رسیدگی فیزیولوژیک، وزن هزاردانه، درصد روغن دانه و سایر صفات مرتبط با عملکرد و کیفیت روغن دانه بود. نتایج حاصل از تجزیه واریانس صفات مورفولوژیک و فنولوژیک این آزمایش نشان داد که لاین‌های مورد مطالعه از نظر تمامی صفات اندازه‌گیری شده دارای تفاوت معنی‌دار بودند. بیشترین عملکرد دانه با 5/129، 110، 106 و 101 گرم بر مترمربع به‌ترتیب مربوط به لاین‌های شماره 82، 100، 72 و رقم شاهد سهیل بود. بیشترین میزان روغن و پروتئین بذر با 28/39 و 31/31 درصد به‌ترتیب مربوط به لاین‌های 45 و 133 و کمترین مقدار به‌ترتیب مربوط به لاین‌های 97 و 98 بود. میانگین میزان روغن و پروتئین بذر تمامی لاین‌ها نیز به ترتیب برابر با 57/36 و 53/28 درصد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of Agronomic and Biochemical Traits of Doubled Haploid Camelina Lines under Rainfed Conditions in Kermanshah

نویسندگان [English]

  • Hossein Rostami- Ahmadvandi 1
  • danial kahrizi 2
  • Mehdi Jamshid Moghaddam 3
  • Mehdi Geravandi 1
1 Dryland Agricultural Research Institute, Sararood Branch, Agricultural Research, Education and Extension Organization (AREEO), Kermanshah, Iran
2 Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Ira
3 Dryland Agricultural Research Institute, Sararood Branch, Agricultural Research, Education and Extension Organization, AREEO, Kermanshah, Iran
چکیده [English]

Camelina is recognize as a sustainable and environmentally friendly source for oil and biofuel production due to its adaptability to harsh climate cimditions. In this study, 134 pure double haploid lines of Camelina were evaluated in an augment experiment in terms of relevant agronomic and biochemical traits under dryland conditions. Seeds of each pure line were sown in an experimental unit and in four one-meter rows at the Dryland Agricultural Research Institute (DARI) Kermanshah, Iran. The measured traits included grain yield per unit area, plant height, days to flowering, days to maturity, thousand-seed weight, seed oil percentage, and other traits related to seed oil yield and quality. The results of the analysis of variance of morphological and phenological traits of this experiment showed that the studied lines had significant differences in all measured traits. The highest seed yield was 129.5, 110, 106 and 101 g/m2 for lines DH82, DH 100, DH 72 and Soheil cultivar, respectively. The highest seed oil and protein content was 39.28 and 31.31 percent for lines DH 45 and DH 133, respectively, and the lowest was for lines DH 97 and DH 98, respectively. The average oil and protein content of the seeds across all lines was 36.57% and 28.53%, respectively.

کلیدواژه‌ها [English]

  • Oil crops
  • Camelina
  • Oil quality
Agache, S., Bachelier, B., De Buyser, J., Henry, Y. & Snap, J.W. (1989). Genetic analysis of anther culture response in wheat using aneuploid, chromosome substitution and translocation lines. Theoretical Applied Genetics, 77, 7-11. Akk, E., & Ilumäe, E. (2005). Possibilities of growing Camelina sativa in ecological cultivation. Estonian Research Institute of Agriculture, Teaduse 13, 75501, Saku, Estonia. Amiri, R., Rostami Ahmadvandi, H., & Sayyahfar, M. (2023) Evaluation of Genetic Diversity in Advanced High-Oil Camelina Lines under Rainfed Conditions. Journal of Crop Breeding, 15(47), 152-164. (in Persian) Bakhshandeh, E., Abdellaoui, R., Hosseini Sanehkoori, F., Ghorbani, H., & Mirzaaghpour, N. (2024). Optimizing Seed Physiological Maturity and Quality in Camelina Through Plant Density Variation: A Nonlinear Regression Approach. Agricultural Research, 1-14. Cai, Y., Liang, Y., Shi, H., Cui, J., Prakash, S., Zhang, J., & Shanklin, J. (2024). Creating yellow seed Camelina sativa with enhanced oil accumulation by CRISPR‐mediated disruption of Transparent Testa 8. Plant Biotechnology Journal, 22(10), 2773-2784. Dwivedi, S.L., Britt, A.B., Tripathi, L., Sharma, S., Upadhyaya, H.D. & Ortiz, R., (2015). Haploids: constraints and opportunities in plant breeding. Biotechnology advances, 33(6), 812-829. Ebrahimi, A., Chenar, H. M., Rashidi-Monfared, S., & Kahrizi, D. (2025). Enhancing Food Security via selecting Superior Camelina (Camelina sativa L.) parents: a positive approach incorporating pheno-morphological traits, fatty acids composition, and Tocopherols Content. BMC Plant Biology, 25(1), 53. Ferrie, A.M.R. & Bethune, T.D. (2011). Erratum to: A microspore embryogenesis protocol for Camelina sativa, a multi-use crop. Plant Cell, Tissue and Organ Culture, 107 (2), 371-371. Francki, M., Ghamkhar, K., Croser, J., Aryamanesh, N., Campbell, M., Kon'kova, N., & Francis, C. (2010). Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome,53(7),558-567. Gehringer, A., Friedt, W., Luhs, W., & Snowdon, R. J. (2006). Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome, 49(12), 1555-1563 doi: 10.1139/g06-117. Ghamarnia, H., Kahrizi, D., & Rostami Ahmadvandi, H. (2019). Camelina, a low-input and adaptable plant. Razi University Press. (in Persian) Imbrea, F., Jurcoane, S., Halmajan, H., Duda, M., & Botos, L. (2011). Camelina sativa: A new source of vegetal oils. Romanian Biotechnological Letters, 16 (3), 6263-6270. Kahrizi, D., Rostami-Ahmadvandi, H., & Akbarabadi, A. (2015). Feasibility Cultivation of Camelina (Camelina sativa) as Medicinal-Oil Plant in Rainfed Conditions in Kermanshah-Iran's First Report. Journal of Medicinal Plants and By-products, 2,215-218. Lepage, G., & Roy, C.C. (1984). Improved recovery of fatty acid through direct transesterification without prior extraction or purification. Journal of Lipid research, 25(12), 1391-1396. McVay, K.A. (2008). Camelina Production in Montana, MT200701AG Revised. Minaei Chenar, H., Rashidi Monfared, S., Kahrizi, D., Zarei, L., & Ebrahimi, A. (2022) Evaluation of genetic variation in doubled haploid lines of Camelina using REMAP retrotransposon markers. Genetic Engineering and Biosafety Journal, 11 (2), 6. (in Persian) Miri, A., Jafarizadeh, M., & Ghamarnia, H. (2011). Drought and its impact on groundwater resources using SPI index (case study of Kermanshah, Sahneh and Sonqor counties), First National Congress of Modern Agricultural Sciences and Technologies, Zanjan, University of Zanjan. (in Persian). Mondor, M., & Hernández‐Álvarez, A. J. (2022). Camelina sativa composition, attributes, and applications: A review. European Journal of Lipid Science and Technology, 124(3), 2100035. Rakic, Z., & Johnson, C. B. (2024). Influence of environmental factors (including UV-B radiation) on the composition of the essential oil of Ocimum basilicum–sweet basil. In Breeding Research on Aromatic and Medicinal Plants (pp. 157-162). CRC Press. Rathke, G.W.O., & Diepenbrock, W. (2005). Effect of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotation. Field Crops Research, 94(2-3), 103-113. Raziei, Z., Kahrizi, D. & Rostami-Ahmadvandi, H., (2018). Effects of climate on fatty acid profile in Camelina sativa. Cellular and molecular biology (Noisy-le-Grand, France), 64(5), 91-96. Robinson, RG. (1987). Camelina: a useful research crop and a potential oilseed crop. Agricultural Experiment Station, University of Minnesota. Salvador, M.D., Aranda, F., G´omez-Alonso, S. & Fregapane, G. (2001). Cornicabra virgin olive oil: a study of five crop seasons. Composition, quality and oxidative stability. Food Chemistry, 74, 267-274. Samadi, M. (2013). Importance and improvement of Camelina. Internal newsletter of Oilseeds Cultivation Development Company. Issue 28. (in Persian) Singh, R., Bollina, V., Higgins. E. E., Clarke. W. E., Eynck. C., Sidebottom. C., Gugel, R., Snowdon, R., & Parkin, I. A., (2015). Single nucleotide polymorphism identification and genotyping in Camelina sativa. Molecular Breeding, 35, 1-13. Toncea, I., Necseriu, D., Prisecaru, T., Balint, L., Ghilvacs, G., & Popa, M. (2013). The seed’s and oil composition of Camelia–first Romanian cultivar of camelina (Camelina sativa L. Crantz). Romanian Biotechnological Letters, 18 (5). Vollmann, J., & Eynck, C., (2015). Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering. Biotechnology Journal, 10, 525-535. Vollmann, J., Grausgruber, H., Stift, G., Dryzhyruk, V., & Lelley, T. (2005). Genetic diversity in camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism. Plant Breeding, 124, 446-453 Zanetti, F., Alberghini, B., Marjanović Jeromela, A., Grahovac, N., Rajković, D., Kiprovski, B., & Monti, A. (2021). Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agronomy for Sustainable Development, 41, 1-18. Zanetti, F., Peroni, P., Pagani, E., von Cossel, M., Greiner, B. E., Krzyżaniak, M., & Monti, A. (2024). The opportunities and potential of camelina in marginal land in Europe. Industrial Crops and Products, 211, 118224. Zeinanlou, A., Arji, A., Taslimpour, M.R., Ramezani Malekroudi, M., & Azimi, M. (2015). The effect of cultivar and climatic conditions on the fatty acid composition of olive oil. Iranian Horticultural Sciences, 46(2), 233-242. (in Persian) Zubr, J. (1997). Oil-seed crop: Camelina sativa. Industrial Crops and Products, 6, 113-119.