شناسایی ژن‌ها و فاکتورهای رونویسی ‏دخیل در بیوسنتز سزکویی‌ترپن‌لاکتون‌ها ‏در آفتابگردان با استفاده از تحلیل ‏شبکه هم‌بیانی وزندار‌ژن‌ها ‏

نوع مقاله : علمی پژوهشی

نویسندگان

1 گروه تولید و ژنتیک گیاهی، دانشکده کشا.ورزی، دانشگاه کردستان، سنندج، ایران

2 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

10.30473/cb.2025.75726.2016

چکیده

سزکویی‌ترپن‌لاکتون‌ها گروهی از متابولیت‌های ثانویه زیست‌فعال هستند که در مسیر مِوالونات آفتابگردان با دخالت آنزیم‌های بالادستی کلیدی شامل HaGAS1/2، HaGAO1/2، HaCOS و HaG8H سنتز می‌شوند. این ترکیبات، مانند دهیدروکاستوس‌لاکتون، 8-اپی‌زانتاتین و تومنتوسین، نقش‌های زیستی مهمی دارند، اما ژن‌های دقیق دخیل در بیوسنتز آن‌ها به‌طور کامل شناسایی نشده‌اند. در این مطالعه، داده‌های ترنسکریپتومی تحت تیمارهای اتیلن، سالیسیلیک‌اسید، متیل‌جاسمونات و پلی‌اتیلن‌گلیکول تحلیل شد و با استفاده از شبکه هم‌بیانی ژن‌ها چندین ژن کاندید شناسایی گردید، از جمله سنتتازهای احتمالی کاستونولید (LOC110928784، LOC110928786) و ژن‌های دخیل در واکنش‌های کاهش مشابه DBR2 (LOC110893694، LOC110886996). تحلیل پروموتر ژن‌های کلیدی مسیر نشان داد موتیف‌های سیس‌تنظیمی اختصاصی شامل W-box، G-box، GCC-box، bZIP و CBF2/RAA در ژن‌ها توزیع ژن‌اختصاصی دارند. همچنین چندین ژن کاندید مربوط به فاکتورهای رونویسی bZIP و ERF به‌عنوان تنظیم‌کننده‌های احتمالی ژن‌های کلیدی مسیر شناسایی شدند. بیان ژن‌ها با روش qPCR در شش ژن منتخب بررسی شد و نتایج نشان داد ژن‌های بالادستی (HaGAS1، HaGAO1، HaG8H، HaCOS) عمدتاً در برگ‌ها و تریکوم‌های غده‌ای و ژن‌های پایین‌دستی (LOC110928784، LOC110893694) در ریشه‌ها بیان ترجیحی دارند، که نمایانگر تقسیم فضایی بیوسنتز سزکویی‌ترپن‌لاکتون‌ها است. به‌طور کلی، یافته‌ها اجزای جدیدی از مسیر بیوسنتزی سزکویی‌ترپن‌لاکتون‌ها و فاکتورهای تنظیمی آن را آشکار می‌کنند و اهداف ارزشمندی برای مهندسی متابولیک و توسعه رویکردهای نوین کنترل بیولوژیک گل‌جالیز فراهم می‌سازند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comprehensive Identification of Candidate Genes and Regulatory Transcription Factors Governing Sesquiterpene Lactone Biosynthesis in Sunflower via Weighted Gene Co-expression Network Analysis (WGCNA)

نویسندگان [English]

  • Saadat Mohammadnejad 1
  • MOHAMMAD Majdi 2
  • Ghader Mirzaghaderi 2
  • Asad Maroufi 2
1 Department of Plant Production and Genetics, Faculty of Agriculture, Kurdistan University, Sanandaj, Iran
2 Department of Plant Production and Genetics, Faculty of Agriculture, Kurdistan University, Sanandaj, Iran
چکیده [English]

Sesquiterpene lactones (STLs) are a group of bioactive secondary metabolites synthesized in the sunflower mevalonate pathway through the action of key upstream enzymes, including HaGAS1/2, HaGAO1/2, HaCOS, and HaG8H. These compounds, such as dehydrocostuslactone, 8-epixanthatin, and tomentosin, play important biological roles, yet the precise genes involved in their biosynthesis remain incompletely characterized. In this study, transcriptomic data under treatments with ethylene, salicylic acid, methyl jasmonate, and polyethylene glycol were analyzed, and several candidate genes were identified using gene co-expression network analysis, including putative costunolide synthases (LOC110928784, LOC110928786) and genes involved in DBR2-like reduction reactions (LOC110893694, LOC110886996). Promoter analysis of key pathway genes revealed gene-specific distributions of cis-regulatory motifs, including W-box, G-box, GCC-box, bZIP, and CBF2/RAA. Several candidate genes encoding bZIP (XP_022029119 and XP_022023437) and ERF (XP_021969365, XP_022017763, and XP_022002255) transcription factors were also identified as potential regulators of key pathway genes. Gene expression analysis by qPCR in six selected genes showed that upstream genes (HaGAS1, HaGAO1, HaG8H, HaCOS) were predominantly expressed in leaves and glandular trichomes. In contrast, downstream genes (LOC110928784, LOC110893694) exhibited preferential expression in roots, indicating spatial partitioning of STL biosynthesis in sunflower. Overall, these findings reveal new components of the STL biosynthetic pathway and its regulatory factors, providing valuable targets for metabolic engineering and novel biocontrol strategies in sunflower.

کلیدواژه‌ها [English]

  • Sesquiterpene ‌‌Lactone
  • Sunflower
  • Transcriptome
  • Weighted Gene Co-Expression Network Analysis
Bhagat, P. K., Verma, D., Sharma, D., & Sinha, A. K. (2021). HY5 and ABI5 transcription factors physically interact to fine tune light and ABA signaling in Arabidopsis. Plant molecular biology, 107(1), 117-127. Castilhos, G., Lazzarotto, F., Spagnolo-Fonini, L., Bodanese-Zanettini, M. H., & Margis-Pinheiro, M. (2014). Possible roles of basic helix-loop-helix transcription factors in adaptation to drought. Plant science, 223, 1-7. Chandler, J., & Werr, W. (2020). A phylogenetically conserved APETALA2/ethylene response factor, ERF12, regulates arabidopsis floral development. Plant molecular biology, 102(1), 39-54. Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular plant, 13(8), 1194-1202. Chen, M., Yan, T., Shen, Q., Lu, X., Pan, Q., Huang, Y., Tang, Y., Fu, X., Liu, M., & Jiang, W. (2017). GLANDULAR TRICHOME‐SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. New Phytologist, 214(1), 304-316. Eidi, M., Abdolalizadeh, S., Nasirpour, M. H., Zahiri, J., & Garshasbi, M. (2024). 123FASTQ: an intuitive and efficient tool for preprocessing Illumina FASTQ reads. bioRxiv, 2024.2003. 2008.584032. Fasoli, B., Lin, J. C., Bowling, D. R., Mitchell, L., & Mendoza, D. (2018). Simulating atmospheric tracer concentrations for spatially distributed receptors: updates to the Stochastic Time-Inverted Lagrangian Transport model's R interface (STILT-R version 2). Geoscientific Model Development, 11(7), 2813-2824. Fernández-Aparicio, M., Del Moral, L., Muños, S., Velasco, L., & Pérez-Vich, B. (2022). Genetic and physiological characterization of sunflower resistance provided by the wild-derived Or Deb2 gene against highly virulent races of Orobanche cumana Wallr. Theoretical and Applied Genetics, 135(2), 501-525. Frey, M., Klaiber, I., Conrad, J., Bersch, A., Pateraki, I., Ro, D.-K., & Spring, O. (2019). Characterization of CYP71AX36 from sunflower (Helianthus annuus L., Asteraceae). Scientific Reports, 9(1), 14295. Frey, M., Klaiber, I., Conrad, J., & Spring, O. (2020). CYP71BL9, the missing link in costunolide synthesis of sunflower. Phytochemistry, 177, 112430. Frey, M., Schmauder, K., Pateraki, I., & Spring, O. (2018). Biosynthesis of Eupatolide—A metabolic route for sesquiterpene lactone formation involving the P450 enzyme CYP71DD6. ACS Chemical Biology, 13(6), 1536-1543. Göpfert, J., Bülow, A.-K., & Spring, O. (2010). Identification and functional characterization of a new sunflower germacrene A synthase (HaGAS3). Natural Product Communications, 5(5), 1934578X1000500507. Hao, X., Zhong, Y., N tzmann, H.-W., Fu, X., Yan, T., Shen, Q., Chen, M., Ma, Y., Zhao, J., & Osbourn, A. (2019). Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua. Plant and Cell Physiology, 60(8), 1747-1760. Hu, X., Xu, X., & Li, C. (2018). Ectopic expression of the LoERF017 transcription factor from Larix olgensis Henry enhances salt and osmotic-stress tolerance in Arabidopsis thaliana. Plant Biotechnology Reports, 12(2), 93-104. Iglesias‐Fernández, R., Barrero‐Sicilia, C., Carrillo‐Barral, N., Oñate‐Sánchez, L., & Carbonero, P. (2013). Arabidopsis thaliana bZIP 44: a transcription factor affecting seed germination and expression of the mannanase‐encoding gene AtMAN7. The Plant Journal, 74(5), 767-780. Ikezawa, N., Göpfert, J. C., Nguyen, D. T., Kim, S.-U., O'Maille, P. E., Spring, O., & Ro, D.-K. (2011). Lettuce costunolide synthase (CYP71BL2) and its homolog (CYP71BL1) from sunflower catalyze distinct regio-and stereoselective hydroxylations in sesquiterpene lactone metabolism. Journal of Biological Chemistry, 286(24), 21601-21611. Illescas-Miranda, J., Llanos-Casado, V., Contreras, E., Carrillo-Barral, N., & Iglesias-Fernández, R. (2025). Temporal and spatial expression analysis of AtbZIP9 during seed and silique development in Arabidopsis thaliana (L.) Heynh. Plant Gene, 100536. Kashkooli, A. B., van der Krol, A. R., Rabe, P., Dickschat, J. S., & Bouwmeester, H. (2019). Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production. Metabolic engineering, 54, 12-23. Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature biotechnology, 37(8), 907-915. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & Subgroup, G. P. D. P. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078-2079. Li, J., Sima, W., Ouyang, B., Wang, T., Ziaf, K., Luo, Z., Liu, L., Li, H., Chen, M., & Huang, Y. (2012). Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. Journal of Experimental Botany, 63(18), 6407-6420. Li, S., Wang, H., Li, F., Chen, Z., Li, X., Zhu, L., Wang, G., Yu, J., Huang, D., & Lang, Z. (2015). The maize transcription factor EREB 58 mediates the jasmonate‐induced production of sesquiterpene volatiles. The Plant Journal, 84(2), 296-308. Liao, Y., Liu, X., Xu, N., Chen, G., Qiao, X., Gu, Q., Wang, Y., & Sun, J. (2024). Fine mapping and identification of ERF transcription factor ERF017 as a candidate gene for cold tolerance in pumpkin. Theoretical and Applied Genetics, 137(10), 230. Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features.Bioinformatics,30(7),923-930. Lv, B., Wei, K., Hu, K., Tian, T., Zhang, F., Yu, Z., Zhang, D., Su, Y., Sang, Y., & Zhang, X. (2021). MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis. Molecular plant, 14(2), 285-297. Majdi, M., Ashengroph, M., & Abdollahi, M. R. (2016). Sesquiterpene lactone engineering in microbial and plant platforms: parthenolide and artemisinin as case studies. Applied microbiology and biotechnology, 100(3), 1041-1059. Mao, J.-L., Miao, Z.-Q., Wang, Z., Yu, L.-H., Cai, X.-T., & Xiang, C.-B. (2016). Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS genetics, 12(1), e1005760. Maqsood, H., Munir, F., Amir, R., & Gul, A. (2022). Genome-wide identification, comprehensive characterization of transcription factors, cis-regulatory elements, protein homology, and protein interaction network of DREB gene family in Solanum lycopersicum. Frontiers in Plant Science, 13, 1031679. Matías‐Hernández, L., Jiang, W., Yang, K., Tang, K., Brodelius, P. E., & Pelaz, S. (2017). Aa MYB 1 and its orthologue At MYB 61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. The Plant Journal, 90(3), 520-534. Moore, B. M., Wang, P., Fan, P., Leong, B., Schenck, C. A., Lloyd, J. P., Lehti-Shiu, M. D., Last, R. L., Pichersky, E., & Shiu, S.-H. (2019). Robust predictions of specialized metabolism genes through machine learning. Proceedings of the National Academy of Sciences, 116(6), 2344-2353. Ortiz-Espín, A., Iglesias-Fernández, R., Calderón, A., Carbonero, P., Sevilla, F., & Jiménez, A. (2017). Mitochondrial AtTrxo1 is transcriptionally regulated by AtbZIP9 and AtAZF2 and affects seed germination under saline conditions. Journal of Experimental Botany, 68(5), 1025-1038. Qiu, Z., Wang, H., Li, D., Yu, B., Hui, Q., Yan, S., Huang, Z., Cui, X., & Cao, B. (2019). Identification of candidate HY5-dependent and-independent regulators of anthocyanin biosynthesis in tomato. Plant and Cell Physiology, 60(3), 643-656. Raupp, F. M., & Spring, O. (2013). New sesquiterpene lactones from sunflower root exudate as germination stimulants for Orobanche cumana. Journal of Agricultural and Food Chemistry, 61(44), 10481-10487. Shen, Q., Lu, X., Yan, T., Fu, X., Lv, Z., Zhang, F., Pan, Q., Wang, G., Sun, X., & Tang, K. (2016). The jasmonate‐responsive Aa MYC 2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytologist, 210(4), 1269-1281. Song, N., Ma, L., Wang, W., Sun, H., Wang, L., Baldwin, I. T., & Wu, J. (2019). An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. Journal of Experimental Botany, 70(20), 5895-5908. Spring, O. (2021). Sesquiterpene lactones in sunflower oil. Lwt, 142, 111047. Spring, O., Schmauder, K., Lackus, N. D., Schreiner, J., Meier, C., Wellhausen, J., Smith, L. V., & Frey, M. (2020). Spatial and developmental synthesis of endogenous sesquiterpene lactones supports function in growth regulation of sunflower. Planta,252(1), 2. Wang, X., Sun, W., Fang, S., Dong, B., Li, J., Lv, Z., Li, W., & Chen, W. (2023). AaWRKY6 contributes to artemisinin accumulation during growth in Artemisia annua. Plant science, 335, 111789. Wu, W., Huang, H., Su, J., Yun, X., Zhang, Y., Wei, S., Huang, Z., Zhang, C., & Bai, Q. (2022). Dynamics of germination stimulants dehydrocostus lactone and costunolide in the root exudates and extracts of sunflower. Plant Signaling & Behavior, 17(1), 2025669. Wu, X., Jia, Y., Ma, Q., Wang, T., Xu, J., Chen, H., Wang, M., Song, H., & Cao, S. (2024). The transcription factor bZIP44 cooperates with MYB10 and MYB72 to regulate the response of Arabidopsis thaliana to iron deficiency stress. New Phytologist, 242(6), 2586-2603. Wu, Z., Li, L., Liu, H., Yan, X., Ma, Y., Li, Y., Chen, T., Wang, C., Xie, L., & Hao, X. (2021). AaMYB15, an R2R3-MYB TF in Artemisia annua, acts as a negative regulator of artemisinin biosynthesis. Plant science, 308, 110920. Xiang, L., He, P., Shu, G., Yuan, M., Wen, M., Lan, X., Liao, Z., & Tang, Y. (2022). AabHLH112, a bHLH transcription factor, positively regulates sesquiterpenes biosynthesis in Artemisia annua. Frontiers in Plant Science, 13, 973591. Xu, S., Hou, H., Wu, Z., Zhao, J., Zhang, F., Teng, R., Chen, F., & Teng, N. (2022). Chrysanthemum embryo development is negatively affected by a novel ERF transcription factor, CmERF12. Journal of Experimental Botany, 73(1), 197-212. Yao, Y., Chen, X., & Wu, A.-M. (2017). ERF-VII members exhibit synergistic and separate roles in Arabidopsis. Plant Signaling & Behavior, 12(6), e1329073. Yu, Z.-X., Li, J.-X., Yang, C.-Q., Hu, W.-L., Wang, L.-J., & Chen, X.-Y. (2012). The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Molecular plant, 5(2), 353-365. Zhang, F., Fu, X., Lv, Z., Lu, X., Shen, Q., Zhang, L., Zhu, M., Wang, G., Sun, X., & Liao, Z. (2015). A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Molecular plant, 8(1), 163-175. Zhang, Y., Teoh, K. H., Reed, D. W., Maes, L., Goossens, A., Olson, D. J., Ross, A. R., & Covello, P. S. (2008). The molecular cloning of artemisinic aldehyde Δ11 (13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. Journal of Biological Chemistry, 283(31), 21501-21508. Zheng, H., Jing, L., Jiang, X., Pu, C., Zhao, S., Yang, J., Guo, J., Cui, G., Tang, J., & Ma, Y. (2021). The ERF‐VII transcription factor SmERF73 coordinately regulates tanshinone biosynthesis in response to stress elicitors in Salvia miltiorrhiza. New Phytologist, 231(5), 1940-1955.