با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشجوی دکتری اصلاح نباتات-ژنتیک مولکولی و مهندسی ژنتیک، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه، ارومیه، ایران.

2 استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه، ارومیه، ایران.

3 استادیار، گروه ژنومیکس، انستیتو تحقیقات بیوتکنولوژی کشاورزی ایران، شاخه شمالغرب و غرب، تبریز، ایران.

4 دانشیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه. ارومیه، ایران.

5 استادیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی دانشگاه ارومیه. ارومیه، ایران.

چکیده

گیاه فسکیوی پابلند (Festuca arundinacea) از خانواده Poaceae، یک گیاه آلوهگزاپلوئید (2n=6x=42) دگربارور است که در سرتاسر دنیا به صورت گیاه علوفه‌ای استفاده می‌شود. اکثر صفات مورفولوژیک با ارزش اقتصادی بالا توارث کمّی (پلی‌ژنیک) داشته و بیان ژن‌های کنترل کننده این صفات به طور وسیعی تحت تاثیر محیط قرار می‌گیرند از این رو اصلاح این گونه صفات با روش‌های اصلاح کلاسیک مشکل و زمان‌بر است. در 40 سال اخیر توسعه تکنولوژی نشانگرهای مولکولی و تلفیق آن با روش‌های بیومتری امکان شناسایی QTL و توسعه گزینش به کمک نشانگر را فراهم نموده است. این تحقیق با هدف مطالعه ژنتیکی و شناسایی QTLهای کنترل‌کننده صفات زراعی در ژرم‌پلاسم فسکیوی پابلند و با استفاده از تجزیه ارتباطی انجام شد. در آزمایش مولکولی، تنوع ژنتیکی نود جمعیت فسکیوی پابلند با 10 جفت آغازگرEST-SSR و 39 آغازگر ISSR بررسی شد. در ارزیابی‌های مزرعه‌ای، تنوع فنوتیپی نود جمعیت فسکیوی پابلند در رابطه با 10 صفت زراعی در قالب طرح بلوک-های کامل تصادفی با سه تکرار ارزیابی شد. از میان صفات زراعی مورد بررسی بیشترین تنوع در صفات تاریخ گرده‌افشانی و ارتفاع بوته مشاهده شد. در تجزیه به مؤلفه‌های اصلی براساس صفات زراعی مورد مطالعه جمعیت‌ها به دو گروه اصلی و چهار زیرگروه تقسیم‌بندی کنند. در گروه‌‌بندی جمعیت‌ها براساس کل نشانگرهای مولکولی به روش‌های UPGMA و بیزی، جمعیت‌های فسکیوی پابلند به دو گروه چمنی و علوفه‌ای تقسیم‌بندی شدند. نتایج نشان داد براساس هر دو نشانگر مورفولوژیکی و ژنتیکی مورد استفاده تنوع خوبی بین جمعیت‌ها وجود دارد. در تجزیه ارتباطی با دو روش GLM و MLM بیشترین تعداد نشانگر برای تاریخ گرده‌افشانی شناسایی شد. در روش GLM تعدادی نشانگر مشترک بین دو صفت تاریخ گرده‌افشانی و تاریخ گلدهی مشاهده شد که می‌توانند برای مطالعه همزمان هر دو صفت به کار روند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Study of genetic diversity and association analysis of agronomic traits with ISSR and EST-SSR markers in tall fescue (Festuca arundinacea)

نویسندگان [English]

  • Zeinab Shahabzadeh 1
  • Reza Darvishzadeh 2
  • Reza Mohammadi 3
  • Morad Jafari 4
  • Hadi Alipour 5

1 1. Ph.D. Candidate in Plant Breeding-Molecular Genetics and Genetic Engineering, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.

2 Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.

3 Assistant Professor, Department of Genomics, Agricultural Biotechnology Research Institute of Iran (ABRII), North-West and West Region. Tabriz, IRAN. P. O. Box: 51569-15598.Tel: +98 4133321615, Cell: +98 9133019328, Fax: +98 4133312613.

4 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.

5 Assistant Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran.

چکیده [English]

Study of genetic diversity and association analysis of agronomic traits with ISSR and EST-SSR markers in tall fescue (Festuca arundinacea)

کلیدواژه‌ها [English]

  • Genetic diversity
  • QTL analysis
  • forage crops
  • molecular markers
  • linkage disequilibrium mapping
Abdurakhmonov IY, Kohel RJ, Yu JZ, Pepper AE, Abdullaev AA, Kushanov FN, Salakhutdinov IBZ, Buriev TS, Saha BE, Scheffler JN, Abdukarimov A (2008) Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics 92: 478-487.
Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, Singh L (2007) Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor. Appl. Genet. 114: 359-372.
Amini F, Mirlohi AF, Majidi MM, Shojaiefar S, Kolliker R (2011) Improved Polycross Breeding of Tall Fescue through Marker-based Parental Selection. Plant Breeding 130: 701-707.
Amombo E, Li X, Wang G, Fan S, Shao A, Zhang Y, Fu J (2018) Screening of diverse tall fescue population for salinity tolerance based on SSR marker-physiological trait association. Euphytica 214: 220-232.
Augustyniak A, Perlikowski D, Rapacz M, Kościelniak J, Kosmala A (2018) Insight into cellular proteome of Lolium multiflorum/Festuca arundinacea introgression forms to decipher crucial mechanisms of cold acclimation in forage grasses. Plant Sci. 272: 22-31.
Avval SE (2017) Assessing polymorphism information content (PIC) using SSR molecular markers on local species of Citrullus Colocynthis. Case Study: Iran, Sistan-Balouchestan Province. J. Mol. Biol. Res. 7: 42-49.
Awasthi, AK, Nagaraja GM, Naik GV, Kanginakudru S (2004) Genetic diversity and relationships in mulberry (Morus genus) as revealed by RAPD and ISSR marker assays. BMC Genet. 5:1-9.
Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor. Appl. Genet. 107: 736-744.
Borna F, Luo S, Ahmad NM (2017) Genetic diversity in populations of the medicinal plant Leonurus cardiaca L. revealed by inter-primer binding site (iPBS) markers. Genet. Resour. Crop Evol. 64: 479-492.
Bornet B and Branchard M (2001) Nonanchored Inter Simple Sequence Repeat (ISSR) markers: Reproducible and specific tools for genome fingerprinting. Plant Mol. Biol. Rep. 19: 209-215.
Buckler E, Casstevens T, Bradbury P, Zhang Z, Kroon D, Glaubitz J (2014) User manual for TASSEL, trait analysis by association, evolution and linkage [Internet]. NewYork: Comell University.
Bernardo R (2008) Molecular marker and selection for complex traits in plants: learning from the last 20 years. Crop Sci. 48: 1649-1664.
Cai K, Zhu L, Zhang K, Li K, Zhao Z, Zeng W, Lin X (2019) Development and characterization of EST-SSR markers from RNA-Seq data in Phyllostachys violascens. Front. Plant Sci. 7: 12-31.
Chtourou-Ghorbel N, Chakroun M, Elazreg H, Trifi-Farah N. 2011. Agronomic evaluation and genetic variation of Tunisian tall fescue (Festuca arundinacea Schreb.). Int. J. Agron. 3:21-40.
Collard BC, Jahufer ZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142: 169-196.
Dangi RS, Lagu MD, Choudhary LB, Ranjekar PK, Gupta VS (2004) Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers. BMC Plant Biol.4: 1-11.
Davar R, Darvishzadeh R, Rezaee Danesh Y, Kholghi M, Azizi M, Shah DA (2012) Single sequence repeat markers associated with partial resistance in sunflower to Phoma macdonaldii. Phytopathol. Mediterr. 51: 541‐8.
Dreisigacker S, Zhang P, Warburton ML, Skovmand D, Hoisington D, Melchinger AE (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop. Sci. 45: 653-661.
Ferreira F, Scapim AB, Maldonado C, Mora F (2018) SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks. Crop Breed Appl Biotechnol. 8:13-24.
Fu K, Zhihui G, Xinquan Z, Yan F, Wendan W, Daxu L, Yan P, Linkai H, Ming S, Shiqie B, Xiao M (2016) Insight into the genetic variability analysis and cultivar identification of tall fescue by using SSR markers. Hereditas 153: 9-20.
Ghaffari Azar A, Darvishzadeh R, Hatami Maleki H, Kahrizi D, Darvishi B, Bernoosi I (2018) Identification of inter simple sequence repeat regions associated with agro-morphological traits in maize genome. Cereal Research 8(1): 97-109.
Ghaffari Azar A, Darvishzadeh R, Aghaali Z, Kahrizi D, Darvishi B (2019) Assessment of genetic diversity and grouping of maize lines (Zea mays L.) using ISSR markers. Journal of Cellular and Molecular Research (Iranian Journal of Biology) 32(2): 194-204.
Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, and Schuler, K (2004) Assessing genetic potential in germplasm collections of crop plants by marker-trait association: A case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol. Breed. 13: 93-102.
Hand ML, Cogan NOI, and Forster JW (2012) Molecular characterization and interpretation of genetic diversity within globally distributed germplasm collections of tall fescue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis Huds.). Theor. Appl. Genet. 124: 1127–1137.
Jemes. H (1992) Teaching Bayesian Statistics Using Sampling Methods and MINITAB. Teacher’s Corner. PP. 182-191.
Kraakman ATW, Martínez F, Mussiraliev B, Van Eeuwijk FA, Niks RE (2006) Linkage disequilibrium mapping of morphological, resistance and other agronomically relevant traits in modern spring barley cultivars. Mol. Breed. 171:41‐58.
Kolliker R, Herrmann D, Boller B, Widmer F (2003) Swiss Mattenklee landraces, a distinct and diverse genetic resource of red clover (Trifolium pratense L.). Theor. Appl. Genet. 107: 306-315.
Kumar V, Singh A, Mithra ASV, Krishnamurthy SL, Swarup K, Jain PJ, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP, Singh NK, Mohapatra T (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res. 22: 133-145.
Lal RK, Gupta P, Sarkar S (2018) Phylogenetic relationships, path and principal component analysis for genetic variability and high oil yielding clone selection in vetiver (Vetiveria zizanioides L.) nash. J. Plant Genet. Breed.2: 1-8.
Li X, Wei Y, Moore KJ, Michaud R, Viands DR, Julie L. Hansen, Ananta Acharya, and Brummer EC. (2011) Association mapping of biomass yield and stem composition in a tetraploid alfalfa breeding population. The Plant Genome 4: 24–35.
Lou Y, Hu L, Chen L, Sun X, Yang Y, Liu H, Xu O (2015) Association analysis of simple sequence repeat (SSR) markers with agronomic traits in tall fescue (Festuca arundinacea Schreb.). PLoS ONE. 10(7): e0133054.
Lou Y, Sun X, Chao Y, Amombo E, Wang H, Song F, Xu Q, Zhuge Y (2018) Association mapping of quality traits with SSR markers in tall fescue (Festuca arundia Schreb.). Journal of Animal and Plant Sciences 286: 1787-1794.
Mahendar T, Hari DU, Abhishek R (2014) Genetic dissection of drought and heat S, tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. Plos ONE. 6: 32-50.
Malay MC, Mian MAR, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005) An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor. Appl. Genet. 110:323-336.
Nielsen D, Buckler ES, Dwarf D (2001) Polymorphisms associate with variation in flowering time. Nat. Genet. 283:286‐9.
Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124: 735-742.
Pivoriene O, Pasakinskiene I, Brazauskas G, Lideikyte L, Jenen LB, Lubberstedt T (2008) Inter-simple sequence repeat (ISSR) loci mapping in the genome of perennial ryegrass. Agronomy 54: 17-21.
Pritchard JK, Stephanes M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am. J. Hum. Genet. 67: 170‐81.
Rostami F, Moghaddam F K, Sabbaghand SK, Saridi S (2015) Comparison of PCR-RFLP based on ribosomal regions and SSR markers in genetic diversity of pistachio die-back caused by Paecilomyces variotii. Gene, Cell and Tissue 4: 13-29.
Sehgal D, Rajpal VR, Raina SN, Sasanuma T, Sasakuma T (2009) Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources. Genetica 135: 457-470.
Saha M, Kirigwi F, Chekhovskiy K, Black J, Hopkins A (2006) Molecular mapping of QTLs associated with important forage traits in tall fescue. Molecular Breeding of Forage and Turf 4: 251-258.
Semagn K, Bjørnstad A, Ndjiondjop MN (2006). Review an overview of molecular marker methods for plants. African Journal of Biotechnology 25: 2540-2568.
Shahabzadeh Z, Darvishzadeh R, Mohammadi R, Jafari M (2019) Genetic structure and diversity analysis of tall fescue populations by EST-SSR and ISSR markers. Mol Biol Rep 1: 1-15.
Simko I, Pechenick DA, McHale LK, Truco MJ, Ochoa OE, Michelmore RW, Scheffler BE (2009) Association mapping and marker-assisted selection of the lettuce dieback resistance gene Tvr1. BMC Plant Biol. 9: 135-148.
Sun D F, Ren WB, Sun GL, Peng JH (2011) Molecular diversity and association mapping of quantitative traits in Tibetan wild and worldwide originated barley. Euphytica178: 31-43.
Sun X, Du Z, Ren J, Amombo E, Hu T, Fu G (2015) Association of SSR markers with functional traits from heat stress in diverse tall fescue accessions. BMC Plant Biol. 15: 116-126.
Sved JA (1971) Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor. Popul. Biol. 2:125-141.
Vaishnav V, Wali SA, Tripathi SB, Negi MS, Ansar SA (2018) A preliminary investigation on AFLP marker-wood density trait association in teak (Tectona grandis L. f.). Ann. For. Res. 61(1): 49-63.
Wei Z, Zhang G, Du Q, Zhang J, Li B, Zhang D (2015). Association mapping for morphological and physiological traits in Populus simonii. BMC Genet. 15: 16-31.
Xie WG, Zhang XQ, Ma X, Cai HW, Huang LK, Peng Y, Zeng B (2010) Diversity comparison and phylogenetic relationships of cocksfoot (Dactylis glomerata L.) germplasm as revealed by SSR markers. Can. J. Plant Sci. 90: 13-21.
Yu X, Bai G, Liu S (2013) Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. J. Exp. Bot. 64:1537-51.
Zhang H, Wang Y, Wang W, Bao M, Chan Z (2019) Physiological changes and DREB1s expression profiles of tall fescue in response to freezing stress. Scientia Horticulturae 4: 116-124.
Zhao W, Wang Y, Chen T, Jia G, Wang X, Qi J, Pang Y, Wang S, Li Z, Huang Y, Yile P, Yang Y (2007) Genetic structure of mulberry from different ecotypes revealed by ISSRs in china: An implication for conservation of local mulberry varieties Scientia Horticulturae 115: 47‐55.