Brandt, R., Cabedo, M., Xie, Y., & Wenkel, S. (2014). Homeodomain leucine‐zipper proteins and their role in synchronizing growth and development with the environment. Journal of Integrative Plant Biology, 56(6), 518-26.
Bustos, R., Castrillo, G., Linhares, F., Puga, M. I., Rubio, V., Pérez-Pérez, J., Solano, R., Leyva, A., & Paz-Ares, J. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS genetics, 6(9): e1001102.
Cui, W., Chi, J., Feng, Y., Geng, L., & Liu, R. (2020). Construction and function of a root-specific promoter SRSP. Chinese Journal of Biotechnology, 36(4), 700-706.
de Melo, B. P., de Moura, S. M., Morgante, C. V., Pinheiro, D. H., Alves, N. S. F., Rodrigues-Silva, P. L., Lourenço-Tessutti, I. T., Andrade, R. V., Fragoso, R. R., & Grossi-de-Sa, M. F. (2021). Regulated promoters applied to plant engineering: an insight over promising soybean promoters under biotic stress and their cis-elements. Biotechnology Research and Innovation Journal, 5(1), 0-0.
Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A rapid method for DNA extraction from plant tissue. Plant Molecular Biology Reporter, 1, 19-21.
Devaiah, B. N., Nagarajan, V. K., & Raghothama, K. G. (2007). Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant physiology ,145(1), 147-159.
Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999.) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic acids research, 27(1), 297-300.
Huang, L., Jiang, Q., Wu, J., An, L., Zhou, Z., Wong, C., Wu, M., Yu, H., & Gan, Y. (2020.) Zinc finger protein 5 (ZFP5) associates with ethylene signaling to regulate the phosphate and potassium deficiency-induced root hair development in Arabidopsis. Plant molecular biology, 102(1-2), 143-158.
Jeong, H. J., & Jung, K. H. (2015). Rice tissue-specific promoters and condition-dependent promoters for effective translational application. Journal of integrative plant biology, 57(11), 913-924.
Keb-llanes, M., Gonzalez, G., ChiManzanero, B., & Infante, D. (2002). A Rapid and Simple Method for Small Scale DNA Extraction in Agavaceae and Other Tropical Plants. Plant Molecular Biology Reporter, 20, 299a-299e.
Kim, D. W., Lee, S. H., Choi, S. B., Won, S. K., Heo, Y. K., Cho, M., Park, Y. I., & Cho, H. T. (2006). Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. The Plant cell, 18(11), 2958-2970.
Koyama, T., Ono, T., Shimizu, M., Jinbo, T., Mizuno, R., Tomita, K., Mitsukawa, N., Kawazu, T., Kimura, T., Ohmiya, K., & Sakka, K. (2005). Promoter of Arabidopsis thaliana phosphate transporter gene drives root-specific expression of transgene in rice. Journal of bioscience and bioengineering, 99(1), 38-42.
Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P., & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic acids research, 30(1), 325-327.
Liao, Y. Y., Li, J. L., Pan, R. L., & Chiou, T. J., (2019). Structure-Function Analysis Reveals Amino Acid Residues of Arabidopsis Phosphate Transporter AtPHT1;1 Crucial for Its Activity. Frontiers in plant science, 10, 1158.
Liu, Y., Khan, A. R., & Gan, Y. (2022). C2H2 Zinc Finger Proteins Response to Abiotic Stress in Plants. International journal of molecular sciences, 23(5), 2730.
López-Arredondo, D. L., & Herrera-Estrella, L. (2013). A novel dominant selectable system for the selection of transgenic plants under in vitro and greenhouse conditions based on phosphite metabolism. Plant biotechnology journal, 11(4), 516-525.
Mohan, C., Jayanarayanan, A. N., & Narayanan, S. (2017). Construction of a novel synthetic root-specific promoter and its characterization in transgenic tobacco plants. 3 Biotech, 7(4), 234.
Mudge, S. R., Rae, A. L., Diatloff, E., & Smith, F. W. (2002). Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. The Plant journal: for cell and molecular biology, 31(3), 341-353.
Müller, R., Morant, M., Jarmer, H., Nilsson, L., & Nielsen, T. H. (2007). Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant physiology, 143(1), 156-171.
Nussaume, L., Kanno, S., Javot, H., Marin, E., Pochon, N., Ayadi, A., Nakanishi, T. M., & Thibaud, M. C. (2011). Phosphate Import in Plants: Focus on the PHT1 Transporters. Frontiers in plant science, 2, 1-12.
O’Gallagher, B., Ghahremani, M., Stigter, K., Walker, E. J., Pyc, M., Liu, A. Y., MacIntosh, G. C., Mullen, R. T., & Plaxton, W. C. (2021). Biochemical and molecular characterization of AtPAP17: a dual-localized, low molecular weight Arabidopsis purple acid phosphatase upregulated during phosphate deprivation, senescence, and oxidative stress. Journal of Experimental Botany, 73(1). 382-399.
Parra, G., Bradnam, K., Rose, A. B., & Korf, I. (2011). Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic acids research, 39(13), 5328-5337.
Peykari, N., & Zamani, K. (2019). Cloning and characterization of a constitutive promoter of polyubiquitin gene from Cicer ariethinum. Crop Biotechnology, 9(25), 35-45. (in Persian)
Porto, M. S., Pinheiro, M. P., Batista, V. G., dos Santos, R. C., Filho, P., & de Lima, L. M. (2014). Plant promoters: an approach of structure and function. Molecular biotechnology, 56(1), 38-49.
Reyes, J. C., Muro-Pastor, M. I., & Florencio, F. J. (2004). The GATA family of transcription factors in Arabidopsis and rice. Plant physiology, 134(4), 1718-1732.
Rose, A. B., Carter, A., Korf, I., & Kojima, N. (2016). Intron sequences that stimulate gene expression in Arabidopsis. Plant molecular biology, 92(3), 337-346.
Rubio, V., Linhares, F., Solano, R., Martín, A. C., Iglesias, J., Leyva, A., & Paz-Ares, J. (2001). A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & development, 15(16), 2122-2133.
Scranton, M. A., Ostrand, J. T., Georgianna, D. R., Lofgren, S. M., Li, D., Ellis, R. C., Carruthers, D. N., Dräger, A., Masica, D. L., & Mayfield, S. P. (2016). Synthetic promoters capable of driving robust nuclear gene expression in the green alga Chlamydomonas reinhardtii. Algal research, 15, 135-142.
Sharpley, A. N., Withers, P. J. A., Abdalla, C. W., & Dodd, A. R. (2005). Strategies for the sustainable management of phosphorus. In: JT. Sims, AN. Sharpley, eds. Phosphorus, agriculture and the environment. American Society for Agronomy, Madison,USA,pp.1069-1101.
Sun, L., Song, L., Zhang, Y., Zheng, Z., & Liu, D. (2016). Arabidopsis PHL2 and PHR1 Act Redundantly as the Key Components of the Central Regulatory System Controlling Transcriptional Responses to Phosphate Starvation. Plant physiology, 170(1), 499-514.
Wang, L., & Liu, D. (2017) Analyses of root-secreted acid phosphatase activity in Arabidopsis. Bio-protocol, 7(7), 1-11.
Wang, X., Wang, H. F., Chen, Y., Sun, M. M., Wang, Y., & Chen, Y. F. (2020). The Transcription Factor NIGT1.2 Modulates Both Phosphate Uptake and Nitrate Influx during Phosphate Starvation in Arabidopsis and Maize. The Plant cell, 32(11), 3519-3534.
Wang, Z., Zheng, Z., Song, L., & Liu, D. (2018). Functional Characterization of Arabidopsis PHL4 in Plant Response to Phosphate Starvation. Frontiers in plant science, 9, 1432.1-19.
Wobbe, C. R., & Struhl, K. (1990). Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro. Molecular and cellular biology, 10(8), 3859-3867.
Zare, B., Malboobi, M. A., Jahromi, M. S., & Norouzi, P. (2019). inventors; National Institute of Genetic Engineering, assignee. Binary vectors with minimized biosafety concerns and high transformation rates by engineered plant-derived transfer-DNA. United States patent US 10,370,671. 2019 Aug 6.