با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانش‌آموخته دکتری اصلاح نباتات، دانشکده تولید گیاهی دانشگاه علوم کشاورزی و منابع‌طبیعی گرگان، گرگان، ایران.

2 دانشیار گروه اصلاح نباتات و بیوتکنولوژی، دانشکده تولید گیاهی دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 دانشیار گروه اصلاح‌ نباتات و بیوتکنولوژی، دانشکده تولید گیاهی دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 استادیار گروه زیست فناوری مولکولی گیاهی، پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری، کرج، ایران

چکیده

در سطح مولکولی، بررسی پاسخ و ارزیابی تحمل به شوری گندم زراعی، می‌تواند راهبرد مهمی در درک و مقایسه مکانیسم‌های دفاعی ارقام گندم محسوب گردد. بدین‌منظور، تحقیقی در دانشگاه علوم کشاورزی و منابع‌طبیعی گرگان، به‌صورت آزمایش فاکتوریل در قالب طرح پایه کاملاً تصادفی با 3 تکرار صورت گرفت که فاکتورهای آزمایش شامل ارقام گندم زراعی (رقم متحمل سارک‌6 و رقم حساس بهاره‌چینی‌) و سری‌های زمانی نمونه‌برداری (صفر یا کنترل، 24، 48، 72 و 96 ساعت پس از تنش) بودند. تنش شوری با غلظت 250 میلی‌مولار کلرید سدیم بر روی گیاهچه‌های 10 روزه یکنواخت در مرحله دو برگی اعمال‌شده و نمونه‌برداری از بافت ریشه و اندام هوایی صورت گرفت. سپس میزان یون‌های سدیم و پتاسیم و در ادامه بیان نسبی ژن‌های SOS1 و NHX1 توسط روش qPCR اندازه‌گیری شد. نتایج حاکی از این بود که پس از اعمال تنش شوری، با افزایش زمان نمونه‌برداری، مقدار Na+ در اندام هوایی و ریشه رقم متحمل نسبت به رقم حساس کاهش‌یافته، اما در ارتباط با مقدارK+ ، پاسخ دو رقم و روند تغییرات، بسته به اندام گیاهی، متفاوت بود. همچنین نتایج نشان داد که الگوی بیان ژن‌های SOS 1 و NHX1 در ریشه و اندام هوایی هر دو رقم، دارای روند منظمی نبود، اما در ریشه رقم سارک‌6، تجمع سریع‌تر و بیشتر رونوشت ژن‌ها مشهود بود که بیانگر نقش مهم این ژن‌ها در ریشه برای کاهش جذب یون سدیم و برقراری هموستازی یونی بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of salinity stress on the expression pattern of SOS1 and NHX1 genes in susceptible and tolerant cultivars of wheat crop

نویسندگان [English]

  • Rasoul Khodaverdivand Keshtiban 1
  • Hassan Soltanloo 2
  • Seyedeh Sanaz Ramazanpour 3
  • Vahid Shariati 4

1 Ph.D of Plant Breeding, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Grogan, Iran.** Instructor,, Department of Agriculture, Noor University, Tehran. Iran

2 2. Associate Prof., Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Associate Prof., Department of Plant Breeding and Biotechnology, Faculty of plant production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4 Assistant Prof., Department of Plant Molecular Biotechnology, National Research Institute of Genetic Engineering and Biotechnology, Karaj, Iran

چکیده [English]

Surveying the response and evaluating the salinity tolerance of wheat crop at the molecular level can be considered an important strategy in perception and comparing the defense mechanisms of wheat cultivars. For this purpose, a factorial experiment was conducted at Gorgan university of agricultural sciences and natural resources based on a completely randomized design with three replications in which the experimental factors were included wheat crop cultivars (Sarc 6 as tolerant cultivar and Chinese spring as susceptible cultivar) and sampling time series (control or 0, 24, 48, 72, 96 h after stress). In this experiment, salinity stress with a concentration of 250 mM of sodium chloride was applied to uniform 10-day seedlings in the two-leaf stage, and sampling of root and shoot tissues was performed. Then the amount of sodium and potassium ions and the relative expression of SOS1 and NHX1 genes were measured by the qPCR method in the following. The obtained results indicated that after applying salinity stress, the amount of Na+ in the shoot and root of both cultivars had raised trend with increasing sampling time. But about in the amount of K+, depending on the plant organ, the response of the two cultivars and the trend of variations were different. Also the results showed that the expression pattern of SOS1 and NHX1 genes in the shoot and root of both cultivars, did not have a regular trend. In general, it can be concluded that in the root of the Sarc 6 cultivar, faster and more accumulation of genes transcript was evident. This issue indicates that the essential role of these genes in the root for reducing sodium ion absorption and establishing ionic homeostasis.

کلیدواژه‌ها [English]

  • NHX1
  • Potassium
  • Salinity
  • Sodium
  • SOS1
Ahmed, I. M., Nadira, U. A., Bibi, N., Zhang, G., & Wu, F. (2015). Tolerance to combined stress of drought and salinity in barley. In Combined Stresses in Plants (pp. 93-121). Springer, Cham. Ali, Z., Zhang, D. Y., Xu, Z. L., Xu, L., Yi, J. X., He, X. L., ... & Ma, H. X. (2012). Uncovering the salt response of soybean by unraveling its wild and cultivated functional genomes using tag sequencing. PLoS One, 7(11). Attarzadeh, M., Movahhedi Dehnavi, M., & Ghaffarian Hedesh, M. (2016). Comparison of the effect of water deficit and salt stresses on the growth, sodium and potassium content of wheat (Triticum aestivum L.). Cereal Research, 6(4), 465-476. Baghizadeh, A., Aram Kasmaie, M., Mohammadi Nejad, G,. & Nakhoda, B. (2019) Evaluation of seed yield and accumulation status of sodium, potassium and magnesium ions in different tissues of sensitive and tolerant wheat (Triticum aestivum L.) Varieties. Journal of Crop Breeding 11(31): 174-184. (in persian) Bajji, M., Kinet, J. M., & Lutts, S. (1998). Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant science, 137(2), 131-142. Bartels, D. (2001). Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance?. Trends in Plant Science, 6(7), 284-286. Blumwald, E., Aharon, G. S., & Apse, M. P. (2000). Sodium transport in plant cells. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1465(1-2), 140-151. Boursier, P., & Läuchli, A. (1990). Growth responses and mineral nutrient relations of salt‐stressed sorghum. Crop Science, 30(6), 1226-1233. Brett, C. L., Tukaye, D. N., Mukherjee, S., & Rao, R. (2005). The yeast endosomal Na+ (K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Molecular biology of the cell, 16(3), 1396-1405. Chinnusamy, V., Zhu, J., & Zhu, J. K. (2006). Salt stress signaling and mechanisms of plant salt tolerance. Genetic engineering, 141-177. Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant physiology, 137(3), 807-818. Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in plant science, 19(6), 371-379. Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in plant science, 19(6), 371-379. Ebrahimipour, Z., Darvishzadeh, R., & Arzhang, S. (2020). Study the expression of SOS1, P5CS1 and PMP3-6 genes in maize under salt stress. Crop Biotechnology, 10(30), 1-14. Esfandiari, E., Javadi, A., & Shokrpour, M. (2013). Evaluation of some of biochemical and physiological traits in wheat cultivars in response to salinity stress at seedling stage. Journal of Crops Improvement, 15(1), 27-38. Fahmideh, L., & Fooladvand, Z. (2018). Isolation and semi quantitative PCR of Na+/H+ antiporter (SOS1 and NHX1) genes under salinity stress in Kochia scoparia. Biological procedures online, 20(1), 1-9. Farhoudi, R. (2014). Investigation the salinity tension effect on growth and physiological characteristics of nine wheat cultivars at vegetative growth stage. Crop physiology journal, 5(20), 71-86. Fatemi, F., Nematzadeh, G., Askari, H., & Hashemi, S. (2015). Transcriptom Analysis of Induced Genes in Response to Salt Stress in the Halophyte Aeluropus littoralis. Biotechnology in agriculture 6 (1): 89-96. (in Persian) Ferreira-Silva, S. L., Silveira, J., Voigt, E., Soares, L. & Viegas, R. (2008). Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. Brazilian Journal of Plant Physiology, 20: 51-59. Gaxiola, R. A., Rao, R., Sherman, A., Grisafi, P., Alper, S. L., & Fink, G. R. (1999). The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proceedings of the National Academy of Sciences, 96(4), 1480-1485. Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and experimental Botany, 47(1), 39-50. Gomarian, M., Malboobi, M. A., Darvish, F., Mohammadi, S. A., Razavi, K. H., Rahaie, M., & Alizadeh, H. (2009). Evaluation Of Inducible Gene Expressions Under Long Term Salinity Stress In Tow Susceptible And Tolerant Cultivares Of Wheat. Modern Genetics Journal 4 (1): 27-40. (in persian) Gomarian, M., Malbooi, M. A., Darvish, F., & Mohammadi, S. A. (2012). Comparison inducible candidate gene expression patterns under salinity stress in bread wheat (Triticum aestivum L.). New Finding in Agriculture, 6(2 (winter 2012)), 151-163. Gorham, J., Hardy, C., Wyn Jones, R. G., Joppa, L. R., & Law, C. N. (1987). Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theoretical and Applied Genetics, 74(5), 584-588. Gorham, J., Wyn Jones, R. G., & McDonnell, E. (1985). Some mechanisms of salt tolerance in crop plants. Biosalinity in action: Bioproduction with saline water, 89: 15-40. Hasegawa, P. M. (2013). Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and experimental botany, 92, 19-31. Heidari, M., & Mesri, F. (2010). Studying the effects of different salinity levels on physiological reactions and sodium and potassium uptake in wheat. Environmental Stresses in Crop Sciences, 3(1), 83-94. Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit). Huertas, R., Olias, R., Eljakaoui, Z., Gálvez, F. J., Li, J. U. N., De Morales, P. A., ... & Rodríguez‐Rosales, M. P. (2012). Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant, cell & environment, 35(8), 1467-1482. Jalal Kamali, MR., Najafi Mirak, T., & Asadi, H. (2012) Wheat research and development strategies in Iran. Tehran, Publication of agricultural education. (in persian) Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., ... & Bohnert, H. J. (2001). Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell, 13(4), 889-905. Kiani, D., Soltanloo, H., Ramezanpour, S. S., Nasrolahnezhad Qumi, A. A., Yamchi, A., Zaynali Nezhad, K., & Tavakol, E. (2017). A barley mutant with improved salt tolerance through ion homeostasis and ROS scavenging under salt stress. Acta physiologiae plantarum, 39(3), 1-14. Klein, M., Geisler, M., Suh, S. J., Kolukisaoglu, H. Ü., Azevedo, L., Plaza, S., ... & Martinoia, E. (2004). Disruption of AtMRP4, a guard cell plasma membrane ABCC‐type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility. The Plant Journal, 39(2), 219-236. Kondratjev, M. N., & Rybkina, T. A. (1998). Response and adaptation of wheat, millet and sorghum to chloride salinity. Izvestiya Timiryazevskoĭ Sel'skokhozyaĭstvennoĭ Akademii, (3), 123-139. Li, S. J., Wu, G. Q., & Lin, L. Y. (2022). AKT1, HAK5, SKOR, HKT1; 5, SOS1 and NHX1 synergistically control Na+ and K+ homeostasis in sugar beet (Beta vulgaris L.) seedlings under saline conditions. Journal of Plant Biochemistry and Biotechnology, 31(1), 71-84. Masmoudi-Allouche, F., Châari-Rkhis, A., Kriaâ, W., Gargouri-Bouzid, R., Jain, S. M., & Drira, N. (2009). In vitro hermaphrodism induction in date palm female flower. Plant cell reports, 28(1), 1-10. Mehrabani, V., Hassanpour Aghdam, M. B., & Valizadeh Kamran, R. (2017). ‏‏ Growth and Some Physiological Characteristics of Savory‎‎(Satureja hortensis L.) as Affected by Salinity Stress‎. Journal of Crop Ecophysiology, 11(41 (1)), 99-110. Mittal, R., & Dubey, R. S. (1991). Behaviour of peroxidases in rice: changes in enzyme activity and isoforms in relation to salt tolerance. Plant physiology and biochemistry (Paris), 29(1), 31-40. Moghimi, M., & Alaei Ardakani, M. (2011). Measuring good goverance factors and e-government role in enhancing it. Quarterly Journal of Information technology management, 3(8), 171-188. Molla Heydari Bafghi, R., Baghizadeh, A., & Mohammadinezhad, G. (2017). Evaluation of Salinity and Drought Stresses Tolerance in Wheat Genotypes using Tolerance Indices. Journal of Crop Breeding, 9(23), 27-34. Munns R & Tester M (2008) Mechanisms of Salinity Tolerance. Annual Review of Plant Biology 59 (1): 651-681. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual review of plant biology, 59, 651. Murillo-Amador, B., Jones, H. G., Kaya, C., Aguilar, R. L., García-Hernández, J. L., Troyo-Diéguez, E., ... & Rueda-Puente, E. (2006). Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environmental and Experimental Botany, 58(1-3), 188-196. Nass, R., Cunningham, K. W., & Rao, R. (1997). Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase: insights into mechanisms of sodium tolerance. Journal of Biological Chemistry, 272(42), 26145-26152. Nazari, M., Izanloo, A., Ghaderi, M.Gh & Alizade, Z. (2016). Evaluation of allelic diversity of VRN1 and Ppd1 genes in different bread wheat cultivars. Agricultural Biotechnology Journal, 8(11): 111-124. (in persian) Qureshi, A.S., Qadir, M., Heydari, N., Turral, H., & Javadi, A. (2007). A review of management strategies for salt-prone land and water resources in Iran. International Water Management Institute. Colombo, Sri Lanka. 30p (IWMI Working Paper 125). Rahaie, M., Gomarian, M., Alizadeh, H., Malboobi, M. A., & Naghavi, M. R. (2011). The expression analysis of transcription factors under long term salt stress in tolerant and susceptible wheat genotypes using reverse northern blot technique. Iranian Journal of Crop Sciences, 13(3), 580-595. Rajabi, R., Poustini, K., Jahani, P. P., & Ahmadi, A. (2005). Effects of salinity on yield and some of physiological characteristics in 30 wheat (Tritium aestium L.) cultivars. Journal of agricultural sciences 11(2): 143-154. (in Persian). Rao, Y. R., Ansari, M. W., Sahoo, R. K., Wattal, R. K., Tuteja, N., & Kumar, V. R. (2021). Salicylic acid modulates ACS, NHX1, sos1 and HKT1; 2 expression to regulate ethylene overproduction and Na+ ions toxicity that leads to improved physiological status and enhanced salinity stress tolerance in tomato plants cv. Pusa Ruby. Plant Signaling & Behavior, 16(11), 1950888. Rodrigues, F. A., de Laia, M. L., & Zingaretti, S. M. (2009). Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants. Plant Science, 176(2), 286-302. Ryan, J., Estefan, G., & Rashid, A. (2001). Soil and Plant Analysis Laboratory Manual. ICARDA., Scientific Publishers. Sadeghi, H., & Emam, Y. (2005) Effect of different sodium chloride levels on morphological characteristics, chemical composition and yield components of two bread wheat cultivars. Desert. 10 (2): 267-278. (in Persian). Salekdeh, G. H., Reynolds, M., Bennett, J., & Boyer, J. (2009). Conceptual framework for drought phenotyping during molecular breeding. Trends in plant science, 14(9), 488-496. Sanders, D. (2000). Plant biology: the salty tale of Arabidopsis. Current Biology, 10(13), R486-R488. Shabala, S., & Cuin, T. A. (2008). Potassium transport and plant salt tolerance. Physiologia plantarum, 133(4), 651-669. Sharma, S. K. (1996). Effects of salinity on uptake and distribution of Na+, Cl-and K+ in two wheat cultivars. Biologia plantarum, 38(2), 261-267. Shi, H., Ishitani, M., Kim, C., & Zhu, J. K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the national academy of sciences, 97(12), 6896-6901. Shiran Tafti, M., Pirasteh-Anosheh, H., & Amini, A. (2019). Determining threshold salinity tolerance of wheat promising lines under greenhouse and field conditions. Cereal Research, 9(3), 235-248. Solis, C. A., Yong, M. T., Zhou, M., Venkataraman, G., Shabala, L., Holford, P., ... & Chen, Z. H. (2022). Evolutionary Significance of NHX Family and NHX1 in Salinity Stress Adaptation in the Genus Oryza. International Journal of Molecular Sciences, 23(4), 2092. Suhayda, C. G., Redmann, R. E., Harvey, B. L., & Cipywnyk, A. L. (1992). Comparative response of cultivated and wild barley species to salinity stress and calcium supply. Crop Science, 32(1), 154-163. Tamura, T., Hara, K., Yamaguchi, Y., Koizumi, N., & Sano, H. (2003). Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiology, 131(2), 454-462. Vashev, B., Gaiser, T., Ghawana, T., de Vries, A., & Stahr, K. (2010). Biosafor Project Deliverable 9: Cropping Potentials for Saline Areas in India, Pakistan and Bangladesh. University of Hohenheim, Hohenheim, Germany. Wei, W., Bilsborrow, P. E., Hooley, P., Fincham, D. A., Lombi, E., & Forster, B. P. (2003). Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant and Soil, 250(2), 183-191. Xu, H., Jiang, X., Zhan, K., Cheng, X., Chen, X., Pardo, J. M., & Cui, D. (2008). Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Archives of biochemistry and biophysics, 473(1), 8-15. Yar Hussain, M., Heydariyan, Z., Neazaei, A., & Ramezani, L. (2011). Examined the expression levels of two genes encoding the transcription factors related-MYB family in two varieties of wheat under salt stress. In National Biotechnology Congress of Islamic Republic of Iran, Tehran, Iran. (in Persian). . Yousefi Rad, S., Soltanloo, H., Ramezanpour, S. S., & Zaynali Nezhad, K. (2019). The study of SOS genes expression in mutant barley root under salt stress. Journal of Crop Breeding, 11(29), 1-8. Zahran, H. H., Marín‐Manzano, M. C., Sánchez‐Raya, A. J., Bedmar, E. J., Venema, K., & Rodríguez‐Rosales, M. P. (2007). Effect of salt stress on the expression of NHX‐type ion transporters in Medicago intertexta and Melilotus indicus plants. Physiologia Plantarum, 131(1), 122-130. Zand, B. & Laalinia, A.A., (2019) Cereal cultivation. Tehran, Payam Noor University Publications. (in persian) Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71.