با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : مروری

نویسندگان

1 استاد، گروه بیوتکنولوژی کشاورزی، دانشگاه پیام نور تهران، ایران

2 استادیار، مرکز تحقیقات گیاهان دارویی، پژوهشکده گیاهان دارویی، جهاد دانشگاهی، کرج، ایران

3 دانشیار، گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران

4 دانشجوی دکتری، مرکز تحقیقات گیاهان دارویی، پژوهشکده گیاهان دارویی، جهاد دانشگاهی، کرج، ایران

5 دانشجوی دکتری، بانک گیاهی، مرکز ملی ذخایر ژنتیکی و زیستی ایران، جهاد دانشگاهی، کرج، ایران

چکیده

انواع تنش‌های زیستی و غیر زیستی مانند عوامل بیماری‌زا، آفت‌ها، علف‌های‌هرز، دما، رطوبت نامناسب و بسیاری عوامل دیگر، دستیابی به عملکرد مطلوب محصولات کشاورزی را با مشکلات و معضلات متعددی روبه‌رو ساخته‌است. پیش بینی می‌شود که تا سال 2050 میلادی جمعیت جهان به حدود 6/9 میلیارد نفر برسد که در این صورت، بایستی تولیدات کشاورزی بین 70 تا 100 درصد افزایش یابد تا بتوان از عهده تأمین نیاز به مواد خوراکی بشر بر آمد. عواملی چون کوچک‌تر شدن زمین‌های قابل کشت، کمبود منابع آبی، تغییر اقلیم و کاهش کارایی نهاده‌های شیمیایی کشاورزی، مشکلات ناشی از تنش‌های زیستی و غیر زیستی را برای انواع محصولات تشدید کرده است. بدین ترتیب، دستیابی به فناوری‌های مدرن و ره‌یافت هایی نوین برای حفاظت گیاهان در برابر تنش‌ها و بهبود کارایی مصرف نهاده‌های شیمیایی با هدف تأمین امنیت غذایی به‌گونه‌ای سالم و پایدار، امری کاملاً حیاتی است. نانو زیست‌فناوری که شامل استفاده از نانوساختارها (مواد کوچک‌تر از صد نانومتر) در کاربردهای زیستی است، ابزاری نویدبخش برای محقق شدن کشاورزی پایدار است که عامل کلیدی برای تأمین نیاز روزافزون به غذا در سطح جهان می‌باشد. در مقاله حاضر کلیات نقش فناوری نانو در صنعت کشاورزی به‌عنوان نانو کودها، نانو آفت‌کش‌ها، نانو تنظیم کننده های رشد، نانو اصلاح کننده های آب و خاک و غیره مرور شده‌است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A review, Application of Nanobiotechnology in Agriculture

نویسندگان [English]

  • Mohammad Ali Ebrahimi 1
  • Nassrin Qavami 2
  • Mahdi Dadmehr 3
  • Hadi Kalantari 4
  • Javad Shahghaghi 5
  • Ardeshir Qaderi 2
  • Nassim Zarinpanjeh 2

1 Professor, Department of Biotechnology, Payame Noor University, Tehran, Iran

2 Assistant professor, Medicinal plants Research Center, Institute of medicinal plants, ACECR, Karaj, Iran

3 Associate professor, Department of Biology, Payame Noor University, Tehran, Iran.

4 PhD Student, Medicinal plants Research Center, Institute of medicinal plants, ACECR, Karaj, Iran

5 PhD Student, Plant Bank, Iranian Biological Resource Center (IBRC), ACECR, Karaj, Iran

چکیده [English]

Agriculture is facing many problems and dilemmas on the way to achieving the optimal performance of its products in terms of quantity and quality, due to the presence of various biotic and abiotic stresses such as pathogens, pests, weeds, inappropriate temperature and humidity, and many other factors. It is predicted that by 2050, the world's population will reach about 9.6 billion people, in this way, agricultural production should increase between 70 and 100 percent in order to fulfill the responsibility of providing human food. Factors such as the shrinking of arable land, lack of water resources, climate change, and the reduction of the effectiveness of agricultural chemical inputs have intensified the problems caused by biotic and abiotic stresses for all types of crops. In this way, obtaining modern technologies and new findings to protect plants against stresses and improve the efficiency of using chemical inputs with the aim of ensuring food security in a healthy and sustainable manner is absolutely vital. Nano-biotechnology, which includes using nanostructures (substances smaller than one hundred nanometers) in biological applications, is a promising tool for realizing sustainable agriculture, which is a crucial factor in meeting the growing need for food in the world. In this paper, the general role of nanotechnology in the agricultural industry is reviewed as nano fertilizers, nano pesticides, nano growth regulators, nano water and soil remediators, etc.

کلیدواژه‌ها [English]

  • Crops
  • High-Technology
  • Nano-Structure
Abdel Latef, A. A. H., Srivastava, A. K., El‐sadek, M. S. A., Kordrostami, M., & Tran, L. S. P. (2018). Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degradation & Development, 29(4), 1065-1073. Abdollahdokht, D., Gao, Y., Faramarz, S., Poustforoosh, A., Abbasi, M., Asadikaram, G., & Nematollahi, M. H. (2022). Conventional agrochemicals towards nano-biopesticides, An overview on recent advances. Chemical and Biological Technologies in Agriculture, 9(1),1-19. Adeleye, A. S., Keller, A. A., Miller, R. J., & Lenihan, H. S. (2013). Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products. Journal of Nanoparticle Research, 15(1), 1-18. Adisa, I. O., Pullagurala, V. L. R., Peralta-Videa, J. R., Dimkpa, C. O., Elmer, W. H., Gardea-Torresdey, J. L., & White, J. C. (2019). Recent advances in nano-enabled fertilizers and pesticides, a critical review of mechanisms of action. Environmental Science, Nano, 6(7), 2002-2030. Agrawal, S., & Rathore, P. (2014). Nanotechnology pros and cons to agriculture, a review. International Journal of Current Microbiology and Applied sciences, 3(3), 43-55. Ali, M. A., Rehman, I., Iqbal, A., Din, S., Rao, A. Q., Latif, A., Samiullah, T.R., Azam, S., & Husnain, T. (2014). Nanotechnology, a new frontier in Agriculture. Advances in Life sciences, 1(3), 129-138. Alvarado, K., Bolaños, M., Camacho, C., Quesada, E., & Vega-Baudrit, J. (2019). Nanobiotechnology in agricultural sector, Overview and novel applications. Journal of Biomaterials and Nanobiotechnology, 10(02), 120. Avestan, S., Ghasemnezhad, M., Esfahani, M., & Byrt, C. S. (2019). Application of nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy, 9(5), 246. Bakshi, M., & Abhilash, P. C. (2020). Nanotechnology for soil remediation, Revitalizing the tarnished resource. In Nano-materials as photocatalysts for degradation of environmental pollutants (pp. 345-370). Elsevier. Bardos, P., Merly, C., Kvapil, P., & Koschitzky, H. P. (2018). Status of nanoremediation and its potential for future deployment, Risk‐benefit and benchmarking appraisals. Remediation Journal, 28(3), 43-56. Bhattacharyya, A., Duraisamy, P., Govindarajan, M., Buhroo, A. A., & Prasad, R. (2016). Nano-biofungicides, emerging trend in insect pest control. Advances and applications through fungal nanobiotechnology, 307-319. Borgatta, J., Ma, C., Hudson-Smith, N., Elmer, W., Plaza Perez, C. D., De La Torre-Roche, R., Zuverza-Mena, N., Hynes, C.L., White, J.C., & Hamers, R.J. (2018). Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus), role of particle morphology, composition and dissolution behavior. ACS Sustainable Chemistry & Engineering, 6(11), 14847-14856. Chen, H., & Yada, R. (2011). Nanotechnologies in agriculture, new tools for sustainable development. Trends in Food Science & Technology, 22(11), 585-594. Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental chemistry letters, 15(1), 15-22. Chugh, B., Poddar, D., Singh, A., Yadav, P., Thakur, S., Nguyen, T. A., & Rajendran, S. (2022). Nanoparticles-based sensors for agricultural application. In Nanosensors for Smart Agriculture (pp. 117-146). Elsevier. Chugh, B., Poddar, D., Singh, A., Yadav, P., Thakur, S., Nguyen, T. A., & Rajendran, S. (2022). Nanoparticles-based sensors for agricultural application. In Nanosensors for Smart Agriculture (pp. 117-146). Elsevier. Cui, J., Li, Y., Jin, Q., & Li, F. (2020). Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environmental Science, Nano, 7(1), 162-171. Dasgupta, N., Ranjan, S., & Ramalingam, C. (2017). Applications of nanotechnology in agriculture and water quality management. Environmental Chemistry Letters, 15(4), 591-605. Demirer, G. S., Zhang, H., Matos, J., Goh, N., Cunningham, F. J., Sung, Y., Chang, R., Aditham, A.J., Chio, L., Cho, M.J., Staskawicz, B., & Landry, M.P. (2019). High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature nonotechnology,14, 456-464. Didehvari, S., & Hosseini FSJ, (2013) Investigating the effect of production and acceptance of nanotechnology products on sustainable agriculture from the perspective of agricultural researchers. Agricultural Extension and Education Research, 2, 3 (In Persian) Dimkpa, C. O., White, J. C., Elmer, W. H., & Gardea-Torresdey, J. (2017). Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. Journal of agricultural and food chemistry, 65(39), 8552-8559. Elsayed, A. A., Ahmed, E. G., Taha, Z. K., Farag, H. M., Hussein, M. S., & AbouAitah, K. (2022). Hydroxyapatite nanoparticles as novel nano-fertilizer for production of rosemary plants. Scientia Horticulturae, 295, 110851. Gahukar, R. T., & Das, R. K. (2020). Plant-derived nanopesticides for agricultural pest control, challenges and prospects. Nanotechnology for Environmental Engineering, 5(1), 1-9. Genc, Y., Taylor, J., Lyons, G., Li, Y., Cheong, J., Appelbee, M., K., Oldach, & Sutton, T. (2019). Bread wheat with high salinity and sodicity tolerance. Frontiers in plant science, 10, 1280. Gil-Díaz, M., Diez-Pascual, S., González, A., Alonso, J., Rodríguez-Valdés, E., Gallego, J. R., & Lobo, M. C. (2016). A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere, 149, 137-145. Gil-Díaz, M., González, A., Alonso, J., & Lobo, M. C. (2016). Evaluation of the stability of a nanoremediation strategy using barley plants. Journal of environmental management, 165, 150-158. Giraldo, J. P., Wu, H., Newkirk, G. M., & Kruss, S. (2019). Nanobiotechnology approaches for engineering smart plant sensors. Nature nanotechnology, 14(6), 541-553. Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization, current state, foreseen applications, and research priorities. Journal of agricultural and food chemistry, 60(39), 9781-9792. Gomes, H. I., Fan, G., Mateus, E. P., Dias-Ferreira, C., & Ribeiro, A. B. (2014). Assessment of combined electro–nanoremediation of molinate contaminated soil. Science of the total environment, 493,178-184. Huang, Z., Rajasekaran, P., Ozcan, A., & Santra, S. (2018). Antimicrobial magnesium hydroxide nanoparticles as an alternative to Cu biocide for crop protection. Journal of agricultural and food chemistry, 66(33), 8679-8686. Hussain, A., Rizwan, M., Ali, Q., & Ali, S. (2019). Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environmental Science and Pollution Research, 26(8), 7579-7588. Hussain, N., Bilal, M., & Iqbal, H. M. (2022). Carbon-based nanomaterials with multipurpose attributes for water treatment, Greening the 21st-century nanostructure materials deployment. Biomaterials and Polymers Horizen, 1(1),1-11. Kah, M., Tufenkji, N., & White, J. C. (2019). Nano-enabled strategies to enhance crop nutrition and protection. Nature nanotechnology, 14(6), 532-540. Kavanagh, E. W., & Green, J. J. (2022). Toward gene transfer nanoparticles as therapeutics. Advanced Healthcare Materials, 11(7), 2102145. Khan, M. N., Mobin, M., Abbas, Z. K., AlMutairi, K. A., & Siddiqui, Z. H. (2017). Role of nanomaterials in plants under challenging environments. Plant Physiology and Biochemistry, 110, 194-209. Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection, a review. Crop protection, 35, 64-70. Li, Y., Zhu, N., Liang, X., Bai, X., Zheng, L., Zhao, J., Li, Y., Zhang, Z., & Gao, Y. (2020). Silica nanoparticles alleviate mercury toxicity via immobilization and inactivation of Hg (ii) in soybean (Glycine max). Environmental Science, Nano, 7(6), 1807-1817. Liang, L., Zhang, Z., Li, J., Wu, J., Wang, L., Huang, W., & Gao, S. (2017). Direct binding of RNF8 to SUMO2/3 promotes cell survival following DNA damage. Molecular Medicin Reports, 16(6), 8385-8391. Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environmen, 514, 131-139. Liu, J., Wang, F.H., Wang, L.L., Xiao, S.Y., Tong, C.Y., & Liu, X.M. (2008). Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. Journal of Central South University of Technology, 15, 768-773. Lowry, G. V., Avellan, A., & Gilbertson, L. M. (2019). Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnology, 14(6), 517-522. Ma, C., White, J. C., Dhankher, O. P., & Xing, B. (2015). Metal-based nanotoxicity and detoxification pathways in higher plants. Environmental Science & Technology, 49(12), 7109-7122. Madhuban, G., Rajesh, K., & Arunava, G. (2012). Nano-pesticides-A recent approach for pest control. The Journal of Plant Protection Sciences, 4(2), 1-7. Mirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M., & Ghassempour, A. (2013). Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicology and Environmental Safety, 88, 48-54. Mishra, S., Keswani, C., Abhilash, P. C., Fraceto, L. F., & Singh, H. B. (2017). Integrated approach of agri-nanotechnology, challenges and future trends. Frontiers in Plant Science, 8, 471. Mohanty, S., Chakraborty, S., Das, M., & Paul, S. (2022). Role of nanomaterials in phytoremediation of tainted soil. In Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water (pp. 329-353). Elsevier. Mueller, N. C., & Nowack, B. (2010). Nanoparticles for remediation, solving big problems with little particles. Elements, 6(6), 395-400. Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490 (7419), 254-257. Nasrallah, A. K., Kheder, A. A., Kord, M. A., Fouad, A. S., El-Mogy, M. M., & Atia, M. A. (2022). Mitigation of Salinity Stress Effects on Broad Bean Productivity Using Calcium Phosphate Nanoparticles Application. Horticulturae, 8(1), 75. Ningthoujam, R., Jena, B., Pattanayak, S., Dash, S., Panda, M. K., Behera, R. K., Dhal, N.K., & Singh, Y. D. (2022). Nanotechnology in food science. In Bio-Nano Interface (pp. 59-73). Springer, Singapore. Palchoudhury, S., Jungjohann, K. L., Weerasena, L., Arabshahi, A., Gharge, U., Albattah, A., Miller, J., Patel, K., & Holler, R. A. (2018). Enhanced legume root growth with pre-soaking in α-Fe2 O3 nanoparticle fertilizer RSC advances, 8(43), 24075-24083. Parisi, C., Vigani, M., & Rodríguez-Cerezo, E. (2015). Agricultural nanotechnologies, what are the current possibilities? Nano Today, 10(2), 124-127. Parzymies, M. (2021). Nano-silver particles reduce contaminations in tissue culture but decrease regeneration rate and slows down growth and development of Aldrovanda vesiculosa Explants. Applied Sciences, 11(8), 3653. Pradhan, S., & Mailapalli, D. R. (2017). Interaction of engineered nanoparticles with the agri-environment. Journal of Agricultural and Food Chemistry, 65(38), 8279-8294. Prasad, R., Kumar, V., & Prasad, K. S. (2014). Nanotechnology in sustainable agriculture, present concerns and future aspects. African Journal of Biotechnology, 13(6), 705-713. Priester, J. H., Ge, Y., Mielke, R. E., Horst, A. M., Moritz, S. C., Espinosa, K., Gelb, J., Walker, S.L., Nisbet, R.M., An, Y., Schimel, J.P., Palmer, R.G., Hernandez-Viezcas, J.A., Zhao, L., Garrdea-Torresdey, J.L., & Holden, P. A. (2012). Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences, 109(37), E2451-E2456. Radhakrishnan, V. S., Dwivedi, S. P., Siddiqui, M. H., & Prasad, T. (2018). In vitro studies on oxidative stress-independent, Ag nanoparticles-induced cell toxicity of Candida albicans, an opportunistic pathogen. International Journal of Nanomedicine, 13, 91-96. Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94(2), 287-293. Raliya, R., Saharan, V., Dimkpa, C., & Biswas, P. (2017). Nanofertilizer for precision and sustainable agriculture, current state and future perspectives. Journal of Agricultural and Food Chemistry, 66(26), 6487-6503. Rezaei, R., Hosseini, M., Shabanali Fami, H., & Safa, L. (2009). Identification and Analysis of the Barriers of Nanotechnology Development in the Iranian Agricultural Sector from the Viewpoint of the Researchers. Journal of Science and Technology Policy, 2(1), 16-28. Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., ur Rehman, M.Z., & Waris, A. A. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, 269-277. Rizwan, M., Ali, S., ur Rehman, M. Z., Adrees, M., Arshad, M., Qayyum, M. F., Ali, L., Hussain, A., Shahid Chatha, S.A., & Imran, M. (2019). Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environmental Pollution, 248, 358-367. Rodrigues, S. M., Demokritou, P., Dokoozlian, N., Hendren, C. O., Karn, B., Mauter, M. S., & Lowry, G. V. (2017). Nanotechnology for sustainable food production, promising opportunities and scientific challenges. Environmental Science, Nano, 4(4), 767-781. Roy, A., Sharma, A., Yadav, S., Jule, L. T., & Krishnaraj, R. (2021). Nanomaterials for remediation of environmental pollutants. Bioinorganic Chemistry and Applications. Saharan, V., Kumaraswamy, R.V., Choudhary, R. C., Kumari, S., Pal, A., Raliya, R., & Biswas, P. (2016). Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal of Agricultural and Food Chemistry, 64(31), 6148-6155. Sanzari, I., Leone, A., & Ambrosone, A. (2019). Nanotechnology in plant science, to make a long story short. Frontiers in Bioengineering and Biotechnology, 7, 120. Sarmast, M. K., & Salehi, H. (2016). Silver nanoparticles, an influential element in plant nanobiotechnology. Molecular Biotechnology, 58(7), 441-449. Schwabe, F., Schulin, R., Limbach, L. K., Stark, W., Bürge, D., & Nowack, B. (2013). Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere, 91(4), 512-520. Serag, M. F., Kaji, N., Habuchi, S., Bianco, A., & Baba, Y. (2013). Nanobiotechnology meets plant cell biology, carbon nanotubes as organelle targeting nanocarriers. RSC Advances, 3(15), 4856-4862. Singh, J., & Lee, B. K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max), A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environmental Management, 170, 88-96. Soleimanpour M R, Hosseini S J F, Mirdamadi S M, Sarafrazi A (2011) Challenges in commercialization of nanotechnology in agriculture sector of Iran. Annals of Biological Research, 2(4), 68-75. Su, S., Yu, T., Hu, J., & Xianyu, Y. (2022). A bio-inspired plasmonic nanosensor for angiotensin-converting enzyme through peptide-mediated assembly of gold nanoparticles. Biosensors and Bioelectronics, 195, 113621. Sun, P., Sun, Y., Luo, Y., & Hu, Y. (2021, March). The Application Progress of Nano Materials for Remediation in Contaminated Soil. In IOP Conference Series, Earth and Environmental Science, 692(3), 032035. IOP Publishing. Taylor, A. F., Rylott, E. L., Anderson, C. W., & Bruce, N. C. (2014). Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLOS one, 9(4), e93793. Tripathy, B. C., & Oelmüller, R. (2012). Reactive oxygen species generation and signaling in plants. Plant Signaling & Behavior, 7(12), 1621-1633. Verma, K. K., Song, X. P., Joshi, A., Tian, D. D., Rajput, V. D., Singh, M., Arora, J., Minkina, T., & Li, Y. R. (2022). Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials, 12(1), 173. Wang, C., Guo, L., Yao, J., Wang, A., Gao, F., Zhao, X., Zeng, Z., Wang, Y., Sun, C., Cui, H., & Cui, B. (2019). Preparation, characterization and antifungal activity of pyraclostrobin solid nanodispersion by self‐emulsifying technique. Pest Management Science, 75(10), 2785-2793. Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures, towards genetic engineering for stress tolerance. Planta, 218(1), 1-14. Zhao, X., Meng, Z., Wang, Y., Chen, W., Sun, C., Cui, B., Cui, J., Yu, M., Zeng, Z., Guo, S., Luo, D., Cheng, J.Q., Zhang, R., & Cui, H. (2017). Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants, 3, 956-964. Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H., Xing, B., Wang, Z., & Ji, R. (2020). Nano-biotechnology in agriculture, use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural and Food Chemistry, 68(7), 1935-1947. Zobir, S. A. M., Ali, A., Adzmi, F., Sulaiman, M. R., & Ahmad, K. (2021). A review on nanopesticides for plant protection synthesized using the supramolecular chemistry of layered hydroxide hosts. Biology, 10(11), 1077.