با همکاری مشترک دانشگاه پیام نور و انجمن بیوتکنولوژی جمهوری اسلامی ایران

نوع مقاله : علمی پژوهشی

نویسندگان

1 دانشیار گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشجوی کارشناسی ارشد گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانشیار گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

ابرخانواده عامل رونویسی MYB در رشد و نمو گیاه، فعال‌سازی ژن‌های پاسخ‌دهنده به تنش و در مواردی بیوسنتز متابولیت‌های کلیدی نقشی اساس دارند. در دسترس بودن توالی‌های ژنومی سیب‌زمینی، آرابیدوپسیس، ذرت و جو این فرصت را فراهم کرد تا به‌ترتیب 121، 139، 190 و 144 ژن MYB غیرتکراری در ژنوم این گیاهان شناسایی شود. در بررسی خصوصیات تکاملی، دامنه‌های حفاظت‌شده‌ی MYB در دو گیاه تک‌لپه‌ای ذرت و جو از نظر همردیفی و ترتیب قرار گرفتن، شباهت چشمگیری با یکدیگر داشتند. این خصوصیت در رابطه با دو گیاه دولپه‌ای سیب‌زمینی و آرابیدوپسیس نیز صادق بود ولی تفاوت دامنه‌های حفاظت‌شده‌ی MYB در تک‌لپه‌ای‌ها و دولپه‌ای قابل‌توجه بود. اعضای 2R-MYB رایج‌ترین زیرگروه از خانواده‌ی MYB در گیاهان تک‌لپه‌ای و دولپه‌ای بودند و فقط یک عضو از زیرخانواده 4R-MYB در ذرت مشاهده شد. در هر چهار گیاه دلیل اصلی تمایز عملکردی ژن‌ها در این خانواده‌ی ژنی segmental duplication بود که منجر به گزینش تکاملی مثبت و منفی گردیده است. خانواده‌ی ژنی MYB روی تمامی کروموزوم‌های سیب‌زمینی، آرابیدوپسیس، ذرت و جو با پراکنش غیریکنواخت قرار گرفته‌اند. وجود عناصر تنظیمی همسو متنوع و متعدد پاسخ به تنش‌ها و هورمون‌ها در ناحیه‌ی راه‌انداز ژن‌های MYB و بررسی پروفایل‌های بیانی این خانواده ژنی در تنش‌های زیستی و غیرزیستی در آرابیدوپسیس دلالت بر تنوع کارکردی ژن‌های این ابرخانواده دارد. بررسی بیوانفورماتیکی ابرخانواده ژنی MYB در تک‌لپه‌ای‌ها و دولپه‌ای‌ها چارچوبی برای مطالعات مقایسه‌ای، تکاملی و عملکردی اعضای این ابرخانواده‌ی ژنی مهم فراهم می‌کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Genome-wide bioinformatic analysis of MYB gene family in monocotyledons and dicotyledons

نویسندگان [English]

  • Sara Dezhsetan 1
  • Parivash Nezami Anbaran 2
  • Mahdi Behnamian 3

1 Associate Prof., Department of Plant Production. Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 M.Sc. Student, Department of Plant Production. Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

3 Associate Prof., Department of Horticultural Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

چکیده [English]

The MYB transcription factor superfamily has a fundamental role in plant growth and development, activation of stress-responsive genes, and in some cases biosynthesis of key metabolites. The availability of potato, Arabidopsis (dicotyledonous), maize and barley (monocotyledonous) genome sequences provided the opportunity to identify 121, 139, 190 and 144 non-redundant MYB genes in these linages, respectively. In the study of the evolutionary characteristics of MYB conserved domains in two monocotyledonous plants, corn and barley, they were remarkably similar to each other in terms of alignment and order of placement. This characteristic was also true in relation to two dicotyledonous plants, potato and Arabidopsis, but the difference between MYB conserved domains in monocots and dicots was significant. In other words, it seems that despite the similarity of MYB genes in monocots and dicots, this gene family in the evolution in monocots and dicots have derived from each other. The 2R-MYB members were the most common subgroup of the MYB family in monocots and dicots and only one member of the 4R-MYB subfamily was observed in maize. In all four plants, the main reason for the functional differentiation of genes in this gene family was segmental duplication that has led to positive and purifying evolutionary selection. MYB gene family was located on all chromosomes of potato, Arabidopsis, maize and barley with non-uniform distribution. The expression pattern of AT1G57560, AT2G47190, AT3G23250 and AT1G56650 genes changed in more than one test of abiotic stress and hormonal response. Also, the expression pattern of AT1G74080, AT4G12350, AT4G22680, AT2G47190, AT1G48000, AT2G39880, AT5G40330 and AT5G16600 genes changed in more than one biotic stress test. On the other hand, the expression pattern of the AT2G47190 gene showed increased expression in several biotic and abiotic stresses. The presence of diverse and numerous regulatory Cis elements in response to stresses and hormones in the promoter region of MYB genes and the investigation of the expression profiles of this gene family in biotic and abiotic stresses in Arabidopsis indicates the functional diversity of the genes of this superfamily. In silico investigation of MYB gene superfamily in monocots and dicots provides a framework for comparative, evolutionary and functional studies of the members of this important gene superfamily.

کلیدواژه‌ها [English]

  • dicot
  • gene expression profile
  • monocot
  • MYB gene family and transcription factors
Abel, S., Ballas, N., Wong, L., & Theologis, A. (1996). DNA elements responsive to auxin. BioEssays, 18(8), 647–654. https://doi.org/10.1002/bies.950180808 Alexander, R. D., Wendelboe-Nelson, C., & Morris, P. C. (2019). The barley transcription factor HvMYB1 is a positive regulator of drought tolerance. Plant Physiology and Biochemistry, 142, 246–253. https://doi.org/10.1016/j.plaphy.2019.07.014 Ampomah‐Dwamena, C., Thrimawithana, A. H., Dejnoprat, S., Lewis, D., Espley, R. V., & Allan, A. C. (2019). A kiwifruit (Actinidia deliciosa) R2R3‐ MYB transcription factor modulates chlorophyll and carotenoid accumulation. New Phytologist, 221(1), 309–325. https://doi.org/10.1111/nph.15362 Anwar, M., Yu, W., Yao, H., Zhou, P., Allan, A. C., & Zeng, L. (2019). NtMYB3, an R2R3-MYB from Narcissus, regulates flavonoid biosynthesis. International Journal of Molecular Sciences, 20(21), 5456. https://doi.org/10.3390/ijms20215456 Century, K., Reuber, T. L., & Ratcliffe, O. J. (2008). regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiology, 147(1), 20–29. https://doi.org/10.1104/pp.108.117887 Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8), 1194–1202. https://doi.org/10.1016/j.molp.2020.06.009 Chen, G., He, W., Guo, X., & Pan, J. (2021). Genome-wide identification, classification and expression analysis of the MYB transcription factor family in Petunia. International Journal of Molecular Sciences, 22(9), 4838. https://doi.org/10.3390/ijms22094838 Chen, Y. H., Cao, Y. Y., Wang, L. J., Li, L. M., Yang, J., & Zou, M. X. (2018). Identification of MYB transcription factor genes and their expression during abiotic stresses in maize. Biologia Plantarum, 62(2), 222–230. https://doi.org/10.1007/s10535-017-0756-1 Clevenger, J., Chu, Y., Scheffler, B., & Ozias-Akins, P. (2016). A developmental transcriptome map for allotetraploid Arachis hypogaea. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01446 Du, H., Feng, B.-R., Yang, S.-S., Huang, Y.-B., & Tang, Y.-X. (2012). The R2R3-MYB transcription factor gene family in maize. PLoS ONE, 7(6), e37463. https://doi.org/10.1371/journal.pone.0037463 Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., & Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends in Plant Science, 15(10), 573–581. https://doi.org/10.1016/j.tplants.2010.06.005 Fang, Q., Jiang, T., Xu, L., Liu, H., Mao, H., Wang, X., Jiao, B., Duan, Y., Wang, Q., Dong, Q., Yang, L., Tian, G., Zhang, C., Zhou, Y., Liu, X., Wang, H., Fan, D., Wang, B., & Luo, K. (2017). A salt-stress-regulator from the Poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis. Plant Physiology and Biochemistry, 114, 100–110. https://doi.org/10.1016/j.plaphy.2017.02.018 Gangappa, S. N., & Botto, J. F. (2014). The BBX family of plant transcription factors. Trends in Plant Science, 19(7), 460–470. https://doi.org/10.1016/j.tplants.2014.01.010 Grinevich, D. O., Desai, J. S., Stroup, K. P., Duan, J., Slabaugh, E., & Doherty, C. J. (2019). Novel transcriptional responses to heat revealed by turning up the heat at night. Plant Molecular Biology, 101(1–2), 1–19. https://doi.org/10.1007/s11103-019-00873-3 Hajiebrahimi, A., Owji, H., & Hemmati, S. (2017). Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus. Genome, 60(10), 797–814. https://doi.org/10.1139/gen-2017-0059 Jiang, C., Gu, J., Chopra, S., Gu, X., & Peterson, T. (2004). Ordered origin of the typical two- and three-repeat Myb genes. Gene, 326, 13–22. https://doi.org/10.1016/j.gene.2003.09.049 Jin, H., & Martin, C. (1999). Multifunctionality and diversity within the plant MYB-gene family. Plant Molecular Biology, 41, 577-585‏. https://doi.org/10.1023/a:1006319732410 Katiyar, A., Smita, S., Lenka, S., Rajwanshi, R., Chinnusamy, V., & Bansal, K. (2012). Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics, 13(1), 544. https://doi.org/10.1186/1471-2164-13-544 Ke, Y., Abbas, F., Zhou, Y., Yu, R., & Fan, Y. (2021). Auxin-responsive R2R3-MYB transcription factors HcMYB1 and HcMYB2 activate volatile biosynthesis in Hedychium coronarium flowers. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.710826 Kim, J. H., Hyun, W. Y., Nguyen, H. N., Jeong, C. Y., Xiong, L., Hong, S., & Lee, H. (2015). AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5. Plant, Cell & Environment, 38(3), 559–571. https://doi.org/10.1111/pce.12415 Klempnauer, K., Gonda, T., & Bishop, J. (1982). Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a transduced oncogene. Cell, 31, 453–463. Klepikova, A. V., Kasianov, A. S., Gerasimov, E. S., Logacheva, M. D., & Penin, A. A. (2016). A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA ‐seq profiling. The Plant Journal, 88(6), 1058–1070. https://doi.org/10.1111/tpj.13312 Klepikova, A. V., Kulakovskiy, I. V., Kasianov, A. S., Logacheva, M. D., & Penin, A. A. (2019). An update to database TraVA: organ-specific cold stress response in Arabidopsis thaliana. BMC Plant Biology, 19(S1), 49. https://doi.org/10.1186/s12870-019-1636-y Li, M., Lin, L., Zhang, Y., & Sui, N. (2019). ZmMYB31, a R2R3-MYB transcription factor in maize, positively regulates the expression of CBF genes and enhances resistance to chilling and oxidative stress. Molecular Biology Reports, 46(4), 3937–3944. https://doi.org/10.1007/s11033-019-04840-5 Li, X., Xue, C., Li, J., Qiao, X., Li, L., Yu, L., Huang, Y., & Wu, J. (2016). Genome-Wide Identification, Evolution and Functional Divergence of MYB Transcription Factors in Chinese White Pear (Pyrus bretschneideri). Plant and Cell Physiology, 57(4), 824–847. https://doi.org/10.1093/pcp/pcw029 Li, Y., Xiao, J., Wu, J., Duan, J., Liu, Y., Ye, X., Zhang, X., Guo, X., Gu, Y., Zhang, L., Jia, J., & Kong, X. (2012). A tandem segmental duplication (TSD) in green revolution gene Rht‐D1b region underlies plant height variation. New Phytologist, 196(1), 282–291. https://doi.org/10.1111/j.1469-8137.2012.04243.x Lipsick, J. S. (1996). One billion years of Myb. Oncogene, 13(2), 223–235. https://pubmed.ncbi.nlm.nih.gov/8710361/ Liu, J., Osbourn, A., & Ma, P. (2015). MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. Molecular Plant, 8(5), 689–708. https://doi.org/10.1016/j.molp.2015.03.012 Liu, J., Wang, J., Wang, M., Zhao, J., Zheng, Y., Zhang, T., Xue, L., & Lei, J. (2021). Genome-wide analysis of the R2R3-MYB gene family in Fragaria× ananassa and its function identification during anthocyanins biosynthesis in pink-flowered strawberry. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.702160 Lynch, M., & Conery, J. S. (2000). The evolutionary fate and consequences of duplicate genes. Science, 290(5494), 1151–1155. https://doi.org/10.1126/science.290.5494.1151 Ma, D., & Constabel, C. P. (2019). MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends in Plant Science, 24(3), 275–289. https://doi.org/10.1016/j.tplants.2018.12.003 Matsui, A., Ishida, J., Morosawa, T., Mochizuki, Y., Kaminuma, E., Endo, T. A., Okamoto, M., Nambara, E., Nakajima, M., Kawashima, M., Satou, M., Kim, J.-M., Kobayashi, N., Toyoda, T., Shinozaki, K., & Seki, M. (2008). Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant and Cell Physiology, 49(8), 1135–1149. https://doi.org/10.1093/pcp/pcn101 Matus, J. T., Aquea, F., & Arce-Johnson, P. (2008). Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biology, 8(1), 83. https://doi.org/10.1186/1471-2229-8-83 Mehrtens, F., Kranz, H., Bednarek, P., & Weisshaar, B. (2005). The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiology, 138(2), 1083–1096. https://doi.org/10.1104/pp.104.058032 Ogata, K., Morikawa, S., Nakamura, H., Sekikawa, A., Inoue, T., Kanai, H., Sarai, A., Ishii, S., & Nishimura, Y. (1994). Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell, 79(4), 639–648. https://doi.org/10.1016/0092-8674(94)90549-5 Park, Y.-S., Kim, S.-K., Kim, S.-Y., Kim, K. M., & Ryu, C.-M. (2019). The transcriptome analysis of the Arabidopsis thaliana in response to the Vibrio vulnificus by RNA-sequencing. PLOS ONE, 14(12), e0225976. https://doi.org/10.1371/journal.pone.0225976 Paz-Ares, J., Ghosal, D., Wienand, U., Peterson, P. ., & Saedler, H. (1987). The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO Journal, 6, 3553–3558. Rausch, S. (2016). The function of Arabidopsis microRNAs in defense against the necrotrophic fungal pathogen Alternaria brassicicola. Rushton, P. J., & Somssich, I. E. (1998). Transcriptional control of plant genes responsive to pathogens. Current Opinion in Plant Biology, 1(4), 311–315. https://doi.org/10.1016/1369-5266(88)80052-9 Sagawa, J. M., Stanley, L. E., LaFountain, A. M., Frank, H. A., Liu, C., & Yuan, Y. (2016). An R2R3‐MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New Phytologist, 209(3), 1049–1057. https://doi.org/10.1111/nph.13647 Salih, H., Gong, W., He, S., Sun, G., Sun, J., & Du, X. (2016). Genome-wide characterization and expression analysis of MYB transcription factors in Gossypium hirsutum. BMC Genetics, 17(1), 129. https://doi.org/10.1186/s12863-016-0436-8 Scholz, S. S., Schmidt-Heck, W., Guthke, R., Furch, A. C. U., Reichelt, M., Gershenzon, J., & Oelmüller, R. (2018). Verticillium dahliae-Arabidopsis interaction causes changes in gene expression profiles and jasmonate levels on different time scales. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00217 Song, Y., Yang, W., Fan, H., Zhang, X., & Sui, N. (2020). TaMYB86B encodes a R2R3-type MYB transcription factor and enhances salt tolerance in wheat. Plant Science, 300, 110624. https://doi.org/10.1016/j.plantsci.2020.110624 Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K., & Weisshaar, B. (2007). Differential regulation of closely related R2R3‐MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal, 50(4), 660–677. https://doi.org/10.1111/j.1365-313X.2007.03078.x Stracke, R., Werber, M., & Weisshaar, B. (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology, 4(5), 447–456. https://doi.org/10.1016/S1369-5266(00)00199-0 Suzuki, N., Bassil, E., Hamilton, J. S., Inupakutika, M. A., Zandalinas, S. I., Tripathy, D., Luo, Y., Dion, E., Fukui, G., Kumazaki, A., Nakano, R., Rivero, R. M., Verbeck, G. F., Azad, R. K., Blumwald, E., & Mittler, R. (2016). ABA is required for plant acclimation to a combination of salt and heat stress. PLOS ONE, 11(1), e0147625. https://doi.org/10.1371/journal.pone.0147625 Tiwari, R. K., Lal, M. K., Naga, K. C., Kumar, R., Chourasia, K. N., S, S., Kumar, D., & Sharma, S. (2020). Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Scientia Horticulturae, 272, 109592. https://doi.org/10.1016/j.scienta.2020.109592 Wan, J., Wang, R., Zhang, P., Sun, L., Ju, Q., Huang, H., Lü, S., Tran, L.-S., & Xu, J. (2021). MYB70 modulates seed germination and root system development in Arabidopsis. IScience, 24(11), 103228. https://doi.org/10.1016/j.isci.2021.103228 Wang, J., Liu, Y., Tang, B., Dai, X., Xie, L., Liu, F., & Zou, X. (2020). Genome-wide identification and capsaicinoid biosynthesis-related expression analysis of the R2R3-MYB gene family in Capsicum annuum L. Frontiers in Genetics, 11. https://doi.org/10.3389/fgene.2020.598183 Wang, N., Ma, Q., Ma, J., Pei, W., Liu, G., Cui, Y., Wu, M., Zang, X., Zhang, J., Yu, S., Ma, L., & Yu, J. (2019). A comparative genome-wide analysis of the R2R3-MYB gene family among four Gossypium Species and their sequence variation and association with fiber quality traits in an interspecific G. hirsutum × G. barbadense Population. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00741 Wu, M., Xu, X., Hu, X., Liu, Y., Cao, H., Chan, H., Gong, Z., Yuan, Y., Luo, Y., Feng, B., Li, Z., & Deng, W. (2020). SlMYB72 regulates the metabolism of chlorophylls, carotenoids, and flavonoids in tomato fruit. Plant Physiology, 183(3), 854–868. https://doi.org/10.1104/pp.20.00156 Yang, A., Dai, X., & Zhang, W.-H. (2012). A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 63(7), 2541–2556. https://doi.org/10.1093/jxb/err431 Yang, L., Teixeira, P. J. P. L., Biswas, S., Finkel, O. M., He, Y., Salas-Gonzalez, I., English, M. E., Epple, P., Mieczkowski, P., & Dangl, J. L. (2017). Pseudomonas syringae type III effector HopBB1 promotes host transcriptional repressor degradation to regulate phytohormone responses and virulence. Cell Host & Microbe, 21(2), 156–168. https://doi.org/10.1016/j.chom.2017.01.003 Yang, Z., & Bielawski, J. P. (2000). Statistical methods for detecting molecular adaptation. Trends in Ecology & Evolution, 15(12), 496–503. https://doi.org/10.1016/S0169-5347(00)01994-7 Yanhui, C., Xiaoyuan, Y., Kun, H., Meihua, L., Jigang, L., Zhaofeng, G., Zhiqiang, L., Yunfei, Z., Xiaoxiao, W., Xiaoming, Q., Yunping, S., Li, Z., Xiaohui, D., Jingchu, L., Xing-Wang, D., Zhangliang, C., Hongya, G., & Li-Jia, Q. (2006). The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 60(1), 107–124. https://doi.org/10.1007/s11103-005-2910-y Yao, L., Jiang, Y., Lu, X., Wang, B., Zhou, P., & Wu, T. (2016). A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis. Molecular Biology Reports, 43(10), 1089–1100. https://doi.org/10.1007/s11033-016-4042-7 Zhang, Y., Zhang, B., Yang, T., Zhang, J., Liu, B., Zhan, X., & Liang, Y. (2020). The GAMYB-like gene SlMYB33 mediates flowering and pollen development in tomato. Horticulture Research, 7(1), 133. https://doi.org/10.1038/s41438-020-00366-1 Zhao, Y., Cheng, X., Liu, X., Wu, H., Bi, H., & Xu, H. (2018). The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.01426 Zhu, F., Luo, T., Liu, C., Wang, Y., Yang, H., Yang, W., Zheng, L., Xiao, X., Zhang, M., Xu, R., Xu, J., Zeng, Y., Xu, J., Xu, Q., Guo, W., Larkin, R. M., Deng, X., & Cheng, Y. (2017). An R2R3‐MYB transcription factor represses the transformation of α‐ and β‐branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. New Phytologist, 216(1), 178–192. https://doi.org/10.1111/nph.14684